Your browser doesn't support javascript.
loading
Applying whole genome sequencing to predict phenotypic drug resistance in Mycobacterium tuberculosis: leveraging 20 years of nationwide data from Denmark.
Kurtzhals, Mads Lindholm; Norman, Anders; Svensson, Erik; Lillebaek, Troels; Folkvardsen, Dorte Bek.
Affiliation
  • Kurtzhals ML; International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
  • Norman A; International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
  • Svensson E; International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
  • Lillebaek T; International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark.
  • Folkvardsen DB; Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
Antimicrob Agents Chemother ; 68(8): e0043024, 2024 Aug 07.
Article in En | MEDLINE | ID: mdl-38904390
ABSTRACT
Infection with Mycobacterium tuberculosis remains one of the biggest causes of death from a single microorganism worldwide, and the continuous emergence of drug resistance aggravates our ability to cure the disease. New improved resistance detection methods are needed to provide adequate treatment, such as whole genome sequencing (WGS), which has been used increasingly to identify resistance-conferring mutations over the last decade. The steadily increasing knowledge of resistance-conferring mutations increases our ability to predict resistance based on genomic data alone. This study evaluates the performance of WGS to predict M. tuberculosis complex resistance. It compares WGS predictions with the phenotypic (culture-based) drug susceptibility results based on 20 years of nationwide Danish data. Analyzing 6,230 WGS-sequenced samples, the sensitivities for isoniazid, rifampicin, ethambutol, and pyrazinamide were 82.5% [78.0%-86.5%, 95% confidence interval (CI)], 97.3% (90.6%-99.7%, 95% CI), 58.0% (43.2%-71.8%, 95% CI), and 60.5% (49.0%-71.2%, 95% CI), respectively, and specificities were 99.8% (99.7%-99.9%, 95% CI), 99.8% (99.7%-99.9%, 95% CI), 99.4% (99.2%-99.6%, 95% CI), and 99.9% (99.7%-99.9%, 95% CI), respectively. A broader range of both sensitivities and specificities was observed for second-line drugs. The results conform with previously reported values and indicate that WGS is reliable for routine resistance detection in resource-rich tuberculosis low-incidence and low-resistance settings such as Denmark.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microbial Sensitivity Tests / Whole Genome Sequencing / Mycobacterium tuberculosis / Antitubercular Agents Limits: Humans Country/Region as subject: Europa Language: En Journal: Antimicrob Agents Chemother Year: 2024 Type: Article Affiliation country: Denmark

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microbial Sensitivity Tests / Whole Genome Sequencing / Mycobacterium tuberculosis / Antitubercular Agents Limits: Humans Country/Region as subject: Europa Language: En Journal: Antimicrob Agents Chemother Year: 2024 Type: Article Affiliation country: Denmark