Your browser doesn't support javascript.
loading
Development of a vitamin B5 hyperproducer in Escherichia coli by multiple metabolic engineering.
Song, Fuqiang; Qin, Zhijie; Qiu, Kun; Huang, Zhongshi; Wang, Lian; Zhang, Heng; Shan, Xiaoyu; Meng, Hao; Liu, Xirong; Zhou, Jingwen.
Affiliation
  • Song F; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of
  • Qin Z; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  • Qiu K; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  • Huang Z; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  • Wang L; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  • Zhang H; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  • Shan X; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
  • Meng H; Hunan Chengda Biotechnology Co., Ltd., Malukou, Anhua, Hunan, 413506, China.
  • Liu X; Hunan Chengda Biotechnology Co., Ltd., Malukou, Anhua, Hunan, 413506, China.
  • Zhou J; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Province Engineering Research Center of
Metab Eng ; 84: 158-168, 2024 Jul.
Article in En | MEDLINE | ID: mdl-38942195
ABSTRACT
Vitamin B5 [D-pantothenic acid (D-PA)] is an essential water-soluble vitamin that is widely used in the food and feed industries. Currently, the relatively low fermentation efficiency limits the industrial application of D-PA. Here, a plasmid-free D-PA hyperproducer was constructed using systematic metabolic engineering strategies. First, pyruvate was enriched by deleting the non-phosphotransferase system, inhibiting pyruvate competitive branches, and dynamically controlling the TCA cycle. Next, the (R)-pantoate pathway was enhanced by screening the rate-limiting enzyme PanBC and regulating the other enzymes of this pathway one by one. Then, to enhance NADPH sustainability, NADPH regeneration was achieved through the novel "PEACES" system by (1) expressing the NAD + kinase gene ppnk from Clostridium glutamicum and the NADP + -dependent gapCcae from Clostridium acetobutyricum and (2) knocking-out the endogenous sthA gene, which interacts with ilvC and panE in the D-PA biosynthesis pathway. Combined with transcriptome analysis, it was found that the membrane proteins OmpC and TolR promoted D-PA efflux by increasing membrane fluidity. Strain PA132 produced a D-PA titer of 83.26 g/L by two-stage fed-batch fermentation, which is the highest D-PA titer reported so far. This work established competitive producers for the industrial production of D-PA and provided an effective strategy for the production of related products.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pantothenic Acid / Escherichia coli / Metabolic Engineering Language: En Journal: Metab Eng Journal subject: ENGENHARIA BIOMEDICA / METABOLISMO Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Pantothenic Acid / Escherichia coli / Metabolic Engineering Language: En Journal: Metab Eng Journal subject: ENGENHARIA BIOMEDICA / METABOLISMO Year: 2024 Type: Article