Your browser doesn't support javascript.
loading
Novel Artificial Intelligence Combining Convolutional Neural Network and Support Vector Machine to Predict Colorectal Cancer Prognosis and Mutational Signatures From Hematoxylin and Eosin Images.
Mazaki, Junichi; Umezu, Tomohiro; Saito, Akira; Katsumata, Kenji; Fujita, Koji; Hashimoto, Mikihiro; Kobayashi, Masaharu; Udo, Ryutaro; Kasahara, Kenta; Kuwabara, Hiroshi; Ishizaki, Tetsuo; Matsubayashi, Jun; Nagao, Toshitaka; Hazama, Shoichi; Suzuki, Nobuaki; Nagano, Hiroaki; Tanaka, Takashi; Tsuchida, Akihiko; Nagakawa, Yuichi; Kuroda, Masahiko.
Affiliation
  • Mazaki J; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan.
  • Umezu T; Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan.
  • Saito A; Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Department of AI Applied Quantitative Clinical Science, Tokyo Medical University, Tokyo, Japan.
  • Katsumata K; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan.
  • Fujita K; Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan.
  • Hashimoto M; Research and Development Division, Chi Corporation, Tokyo, Japan.
  • Kobayashi M; Research and Development Division, Chi Corporation, Tokyo, Japan.
  • Udo R; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan.
  • Kasahara K; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan.
  • Kuwabara H; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan.
  • Ishizaki T; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan.
  • Matsubayashi J; Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan.
  • Nagao T; Department of Anatomic Pathology, Tokyo Medical University, Tokyo, Japan.
  • Hazama S; Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Surgery, Shunan Hospital, Yamaguchi, Japan.
  • Suzuki N; Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
  • Nagano H; Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
  • Tanaka T; Department of Gastrointestinal Surgery, Obihiro Memorial Hospital, Hokkaido, Japan.
  • Tsuchida A; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan.
  • Nagakawa Y; Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo, Japan. Electronic address: naga@tokyo-med.ac.jp.
  • Kuroda M; Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan; Department of AI Applied Quantitative Clinical Science, Tokyo Medical University, Tokyo, Japan. Electronic address: kuroda@tokyo-med.ac.jp.
Mod Pathol ; 37(10): 100562, 2024 Oct.
Article in En | MEDLINE | ID: mdl-39019345
ABSTRACT
Reducing recurrence following radical resection of colon cancer without overtreatment or undertreatment remains a challenge. Postoperative adjuvant chemotherapy (Adj) is currently administered based solely on pathologic TNM stage. However, prognosis can vary significantly among patients with the same disease stage. Therefore, novel classification systems in addition to the TNM are necessary to inform decision-making regarding postoperative treatment strategies, especially stage II and III disease, and minimize overtreatment and undertreatment with Adj. We developed a prognostic prediction system for colorectal cancer using a combined convolutional neural network and support vector machine approach to extract features from hematoxylin and eosin staining images. We combined the TNM and our artificial intelligence (AI)-based classification system into a modified TNM-AI classification system with high discriminative power for recurrence-free survival. Furthermore, the cancer cell population recognized by this system as low risk of recurrence exhibited the mutational signature SBS87 as a genetic phenotype. The novel AI-based classification system developed here is expected to play an important role in prognostic prediction and personalized treatment selection in oncology.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Colorectal Neoplasms / Neural Networks, Computer / Eosine Yellowish-(YS) / Support Vector Machine / Hematoxylin / Mutation Limits: Aged / Female / Humans / Male / Middle aged Language: En Journal: Mod Pathol Journal subject: PATOLOGIA Year: 2024 Type: Article Affiliation country: Japan

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Colorectal Neoplasms / Neural Networks, Computer / Eosine Yellowish-(YS) / Support Vector Machine / Hematoxylin / Mutation Limits: Aged / Female / Humans / Male / Middle aged Language: En Journal: Mod Pathol Journal subject: PATOLOGIA Year: 2024 Type: Article Affiliation country: Japan