Your browser doesn't support javascript.
loading
Multiple deletions of candidate effector genes lead to the breakdown of partial grapevine resistance to downy mildew.
Paineau, Manon; Minio, Andrea; Mestre, Pere; Fabre, Frédéric; Mazet, Isabelle D; Couture, Carole; Legeai, Fabrice; Dumartinet, Thomas; Cantu, Dario; Delmotte, François.
Affiliation
  • Paineau M; INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France.
  • Minio A; Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA.
  • Mestre P; Department of Viticulture and Enology, University of California Davis, Davis, 95616, CA, USA.
  • Fabre F; INRAE, Université de Strasbourg, SVQV, F-68125, Colmar, France.
  • Mazet ID; INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France.
  • Couture C; INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France.
  • Legeai F; INRAE, Bordeaux Sciences Agro, SAVE, ISVV, F-33340, Villenave d'Ornon, France.
  • Dumartinet T; INRAE, IGEPP, F-35650, Le-Rheu, France.
  • Cantu D; INRIA, IRISA, GenOuest Core Facility, F-35000, Rennes, France.
  • Delmotte F; Univ. Bordeaux, INRAE, BIOGECO, F-33610, Cestas, France.
New Phytol ; 243(4): 1490-1505, 2024 Aug.
Article in En | MEDLINE | ID: mdl-39021210
ABSTRACT
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Diseases / Vitis / Disease Resistance Language: En Journal: New Phytol Journal subject: BOTANICA Year: 2024 Type: Article Affiliation country: France

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Diseases / Vitis / Disease Resistance Language: En Journal: New Phytol Journal subject: BOTANICA Year: 2024 Type: Article Affiliation country: France