Your browser doesn't support javascript.
loading
Bioinformatics analysis and validation of RNA methylation-related genes in osteogenic and adipogenic differentiation of rat bone marrow mesenchymal stem cells.
Wei, Li; Xie, Yuping; Yu, Peiyang; Zhu, Qiang; Lan, Xiaorong; Xiao, Jingang.
Affiliation
  • Wei L; Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
  • Xie Y; Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
  • Yu P; Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
  • Zhu Q; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Chin
  • Lan X; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
  • Xiao J; Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department
Biochem Biophys Res Commun ; 739: 150570, 2024 Aug 22.
Article in En | MEDLINE | ID: mdl-39181069
ABSTRACT

BACKGROUND:

The regulatory mechanisms of RNA methylation during the processes of osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) have yet to be fully understood. The objective of our study was to analyze and validate the contribution of RNA methylation regulators to the mechanisms underlying the osteogenic and adipogenic differentiation of rat BMSCs.

METHODS:

We downloaded the GSE186026 from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were screened using the DESeq2 package in R software (version 3.6.3). A total of 50 RNA methylation genes obtained from literature review and summary were intersected with the previous DEGs to obtain RNA methylation genes, which have different expressions (RM-DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were utilized to reveal the functional enrichment. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate RM-DEGs. Protein-protein interaction network (PPI) analysis and visual analysis were performed using STRING and Cytoscape. RM-DEGs regulatory network was constructed to analyze the top 10 hub genes. The relationship between RM-DEGs, some enriched GO and pathways was also been analyzed. The miRNAs and RM-DEGs regulatory networks were established by using miRWalk and TargetScan.

RESULTS:

As part of our research, we detected varying levels of expression for m6A regulators Mettl3 and Rbm15, as well as m7G regulators Mettl1 and Wdr4, in relation to osteogenic differentiation, along with m6A regulator Fmr1 in adipogenic differentiation. The protein-protein interaction (PPI) networks were constructed for 49 differentially expressed genes (DEGs) related to RNA methylation during the process of osteogenic differentiation, and 13 DEGs for adipogenic differentiation. Moreover, top10 hub genes were calculated. In osteogenic differentiation, Mettl3 regulated the Wnt pathway and Hippo pathway by regulating Smad3, Rbm15 regulated the Notch pathway by Notch1, Mettl1 regulated the PI3K-Akt pathway by Gnb4. In adipogenic differentiation, Fmr1 regulated the PI3K-Akt pathway by Egfr. M6A methylation sites of Smad3, Notch1 and Gnb4 were predicted, and the results showed that all three genes were possibly methylated by m6A, and more than 9 sites per gene were possibly methylated. Finally, we constructed the regulatory networks of Mettl3, Rbm15, Mettl1, and Wdr4 and 109 miRNAs in osteogenic differentiation, Fmr1 and 118 miRNAs in adipogenic differentiation.

CONCLUSIONS:

Mettl3(m6A), Rbm15(m6A), Wdr4 and Mettl1(m7G) were differentially expressed in osteogenic differentiation, while Fmr1(m6A) was differentially expressed in adipogenic differentiation. These findings offered potential candidates for further research on the involvement of RNA methylation in the osteogenic and adipogenic differentiation of BMSCs.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biochem Biophys Res Commun Year: 2024 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Biochem Biophys Res Commun Year: 2024 Type: Article Affiliation country: China