Your browser doesn't support javascript.
loading
The neutralization potency of anti-SARS-CoV-2 therapeutic human monoclonal antibodies is retained against novel viral variants
Efi Makdasi; Anat Zvi; Ron Alcalay; Tal Noy-Porat; Eldar Peretz; Adva Mechaly; Yinon Levy; Eyal Epstein; Theodor Chitlaru; Ariel Tennenhouse; Moshe Aftalion; David Gur; Nir Paran; Hadas Tamir; Oren Zimhony; Shay Weiss; Michal Mandelboim; Ella Mendelson; Neta Zuckerman; Ital Nemet; Limor Kliker; Shmuel Yitzhaki; Shmuel C Shapira; Tomer Israely; Sarel J. Fleishman; Ohad Mazor; Ronit Rosenfeld.
Affiliation
  • Efi Makdasi; IIBR
  • Anat Zvi; IIBR
  • Ron Alcalay; IIBR
  • Tal Noy-Porat; IIBR
  • Eldar Peretz; IIBR
  • Adva Mechaly; IIBR
  • Yinon Levy; IIBR
  • Eyal Epstein; IIBR
  • Theodor Chitlaru; IIBR
  • Ariel Tennenhouse; Weizmann Institute of Science
  • Moshe Aftalion; Israel Institute for Biological Research
  • David Gur; Israel Institute for Biological Research
  • Nir Paran; Israel Institute for Biological Research
  • Hadas Tamir; IIBR
  • Oren Zimhony; Kaplan Medical Center
  • Shay Weiss; IIBR
  • Michal Mandelboim; Israel Ministry of Health
  • Ella Mendelson; Israel Ministry of Health
  • Neta Zuckerman; Israel Ministry of Health
  • Ital Nemet; Israel Ministry of Health
  • Limor Kliker; Israel Ministry of Health
  • Shmuel Yitzhaki; IIBR
  • Shmuel C Shapira; IIBR
  • Tomer Israely; IBR
  • Sarel J. Fleishman; Weizmann Institute of Science
  • Ohad Mazor; Israel Institute for Biological Research
  • Ronit Rosenfeld; IIBR
Preprint in En | PREPRINT-BIORXIV | ID: ppbiorxiv-438035
ABSTRACT
A wide range of SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) were reported to date, most of which target the spike glycoprotein and in particular its receptor binding domain (RBD) and N-terminal domain (NTD) of the S1 subunit. The therapeutic implementation of these antibodies has been recently challenged by emerging SARS-CoV-2 variants that harbor extensively mutated spike versions. Consequently, the re-assessment of mAbs, previously reported to neutralize the original early-version of the virus, is of high priority. Four previously selected mAbs targeting non-overlapping epitopes, were evaluated for their binding potency to RBD versions harboring individual mutations at spike positions 417, 439, 453, 477, 484 and 501. Mutations at these positions represent the prevailing worldwide distributed modifications of the RBD, previously reported to mediate escape from antibody neutralization. Additionally, the in vitro neutralization potencies of the four RBD-specific mAbs, as well as two NTD-specific mAbs, were evaluated against two frequent SARS-CoV-2 variants of concern (VOCs) (i) the B.1.1.7 variant, emerged in the UK and (ii) the B.1.351 variant, emerged in South Africa. Variant B.1.351 was previously suggested to escape many therapeutic mAbs, including those authorized for clinical use. The possible impact of RBD mutations on recognition by mAbs is addressed by comparative structural modelling. Finally, we demonstrate the therapeutic potential of three selected mAbs by treatment of K18-hACE2 transgenic mice two days post infection with each of the virus strains. Our results clearly indicate that despite the accumulation of spike mutations, some neutralizing mAbs preserve their potency against SARS-CoV-2. In particular, the highly potent MD65 and BL6 mAbs are shown to retain their ability to bind the prevalent novel viral mutations and to effectively protect against B.1.1.7 and B.1.351 variants of high clinical concern.
License
cc_by_nc_nd
Full text: 1 Collection: 09-preprints Database: PREPRINT-BIORXIV Type of study: Experimental_studies / Prognostic_studies Language: En Year: 2021 Type: Preprint
Full text: 1 Collection: 09-preprints Database: PREPRINT-BIORXIV Type of study: Experimental_studies / Prognostic_studies Language: En Year: 2021 Type: Preprint