Panax Notoginseng Saponins Inhibits Ventricular Remodeling after Myocardial Infarction in Rats Through Regulating ATF3/MAP2K3/p38 MAPK and NF κ B Pathway / 中国结合医学杂志
Chin. j. integr. med
; Chin. j. integr. med;(12): 897-904, 2020.
Article
in En
| WPRIM
| ID: wpr-880552
Responsible library:
WPRO
ABSTRACT
OBJECTIVE@#To explore whether Panax notoginseng saponins (PNS) exhibits heart protective effect in myocardial infarction (MI) rats and to identify the potential signaling pathways involved.@*METHODS@#MI rats induced by ligating the left anterior descending (LAD) coronary artery were assigned to sham coronary artery ligation or coronary artery ligation. Totally 36 Sprague-Dawley rats were randomly divided into sham group (distilled water, n=9), MI group (distilled water, n=9), PNS group (PNS, 40 mg/kg daily, n=9) and fosinopril group (FIP, 1.2 mg/kg daily, n=9) according to a random number table. The left ventricular morphology and function were conducted by echocardiography. Histological alterations were evaluated by the stainings of HE and Masson. The serum levels of C reactive protein (CRP), tumor necrosis factor α (TNF-α), growth differentiation factor-15 (GDF-15) and the ratio of metalloproteinase-9 (MMP-9) and tissue inhibitor of MMP-9 (TIMP-1) were determined by ELISA. The levels of activating transcription factor 3 (ATF3), mitogen-activated protein kinase kinase 3 (MAP2K3), p38 mitogen-activated protein kinase (p38 MAPK), phosphorylation of p38 MAPK (p-p38 MAPK), transforming growth factor-β (TGF-β1), collagen I, nuclear factor kappa B p65 (NFκB p65), phosphorylation of NFκB p65 (p-NFκB p65), and phosphorylation of inhibitory kappa Bα (p-Iκ Bα) in hearts were measured by Western blot and immunohistochemical staining, respectively.@*RESULTS@#PNS improved cardiac function and fibrosis in MI rats (P<0.05). The serum levels of CRP, TNF-α, GDF-15 and the ratio of MMP9/TIMP1 were reversed by PNS in MI rats. The expressions of TGF-β1, collagen I, MAP2K3, p38 MAPK, p-p38 MAPK, NFκB p65, p-NFκB p65, and p-IκBα were down-regulated, while ATF3 increased with the treatment of PNS (P<0.05).@*CONCLUSIONS@#PNS may improve cardiac function and fibrosis in MI rats via regulating ATF3/MAP2K3/p38 MAPK and NFκB signaling pathways. These results suggest the potential of PNS in preventing the development of ventricular remodeling in MI rats.
Full text:
1
Database:
WPRIM
Type of study:
Prognostic_studies
Language:
En
Journal:
Chin. j. integr. med
Year:
2020
Type:
Article