Domain-enhanced analysis of microarray data using GO annotations.
Bioinformatics
; 23(10): 1225-34, 2007 May 15.
Article
en En
| MEDLINE
| ID: mdl-17379692
MOTIVATION: New biological systems technologies give scientists the ability to measure thousands of bio-molecules including genes, proteins, lipids and metabolites. We use domain knowledge, e.g. the Gene Ontology, to guide analysis of such data. By focusing on domain-aggregated results at, say the molecular function level, increased interpretability is available to biological scientists beyond what is possible if results are presented at the gene level. RESULTS: We use a 'top-down' approach to perform domain aggregation by first combining gene expressions before testing for differentially expressed patterns. This is in contrast to the more standard 'bottom-up' approach, where genes are first tested individually then aggregated by domain knowledge. The benefits are greater sensitivity for detecting signals. Our method, domain-enhanced analysis (DEA) is assessed and compared to other methods using simulation studies and analysis of two publicly available leukemia data sets. AVAILABILITY: Our DEA method uses functions available in R (http://www.r-project.org/) and SAS (http://www.sas.com/). The two experimental data sets used in our analysis are available in R as Bioconductor packages, 'ALL' and 'golubEsets' (http://www.bioconductor.org/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Buscar en Google
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Programas Informáticos
/
Leucemia-Linfoma de Células T del Adulto
/
Linfoma de Burkitt
/
Biología Computacional
/
Análisis de Secuencia por Matrices de Oligonucleótidos
Tipo de estudio:
Diagnostic_studies
/
Evaluation_studies
Límite:
Humans
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2007
Tipo del documento:
Article
País de afiliación:
Estados Unidos