Your browser doesn't support javascript.
loading
Domain-enhanced analysis of microarray data using GO annotations.
Liu, Jiajun; Hughes-Oliver, Jacqueline M; Menius, J Alan.
Afiliación
  • Liu J; Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203, USA. jliu6@stat.ncsu.edu
Bioinformatics ; 23(10): 1225-34, 2007 May 15.
Article en En | MEDLINE | ID: mdl-17379692
MOTIVATION: New biological systems technologies give scientists the ability to measure thousands of bio-molecules including genes, proteins, lipids and metabolites. We use domain knowledge, e.g. the Gene Ontology, to guide analysis of such data. By focusing on domain-aggregated results at, say the molecular function level, increased interpretability is available to biological scientists beyond what is possible if results are presented at the gene level. RESULTS: We use a 'top-down' approach to perform domain aggregation by first combining gene expressions before testing for differentially expressed patterns. This is in contrast to the more standard 'bottom-up' approach, where genes are first tested individually then aggregated by domain knowledge. The benefits are greater sensitivity for detecting signals. Our method, domain-enhanced analysis (DEA) is assessed and compared to other methods using simulation studies and analysis of two publicly available leukemia data sets. AVAILABILITY: Our DEA method uses functions available in R (http://www.r-project.org/) and SAS (http://www.sas.com/). The two experimental data sets used in our analysis are available in R as Bioconductor packages, 'ALL' and 'golubEsets' (http://www.bioconductor.org/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Leucemia-Linfoma de Células T del Adulto / Linfoma de Burkitt / Biología Computacional / Análisis de Secuencia por Matrices de Oligonucleótidos Tipo de estudio: Diagnostic_studies / Evaluation_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Leucemia-Linfoma de Células T del Adulto / Linfoma de Burkitt / Biología Computacional / Análisis de Secuencia por Matrices de Oligonucleótidos Tipo de estudio: Diagnostic_studies / Evaluation_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos