Your browser doesn't support javascript.
loading
Identification of 5' AMP-activated kinase as a target of reactive aldehydes during chronic ingestion of high concentrations of ethanol.
Shearn, Colin T; Backos, Donald S; Orlicky, David J; Smathers-McCullough, Rebecca L; Petersen, Dennis R.
Afiliación
  • Shearn CT; From the Department of Pharmaceutical Sciences and.
  • Backos DS; From the Department of Pharmaceutical Sciences and.
  • Orlicky DJ; Department of Pathology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and.
  • Smathers-McCullough RL; Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195.
  • Petersen DR; From the Department of Pharmaceutical Sciences and Dennis.Petersen@ucdenver.edu.
J Biol Chem ; 289(22): 15449-62, 2014 May 30.
Article en En | MEDLINE | ID: mdl-24722988
The production of reactive aldehydes including 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of chronic inflammatory hepatic diseases including alcoholic liver disease (ALD). One consequence of ALD is increased oxidative stress and altered ß-oxidation in hepatocytes. A major regulator of ß-oxidation is 5' AMP protein kinase (AMPK). In an in vitro cellular model, we identified AMPK as a direct target of 4-HNE adduction resulting in inhibition of both H2O2 and 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced downstream signaling. By employing biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of AMPKα/ß, which was not observed in untreated cells. Using a murine model of alcoholic liver disease, treatment with high concentrations of ethanol resulted in an increase in phosphorylated as well as carbonylated AMPKα. Despite increased AMPK phosphorylation, there was no significant change in phosphorylation of acetyl CoA carboxylase. Mass spectrometry identified Michael addition adducts of 4-HNE on Cys(130), Cys(174), Cys(227), and Cys(304) on recombinant AMPKα and Cys(225) on recombinant AMPKß. Molecular modeling analysis of identified 4-HNE adducts on AMPKα suggest that inhibition of AMPK occurs by steric hindrance of the active site pocket and by inhibition of hydrogen peroxide induced oxidation. The observed inhibition of AMPK by 4-HNE provides a novel mechanism for altered ß-oxidation in ALD, and these data demonstrate for the first time that AMPK is subject to regulation by reactive aldehydes in vivo.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Etanol / Aldehídos / Proteínas Quinasas Activadas por AMP / Hígado Graso / Hepatopatías Alcohólicas Tipo de estudio: Diagnostic_studies Límite: Animals / Humans / Male Idioma: En Revista: J Biol Chem Año: 2014 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Etanol / Aldehídos / Proteínas Quinasas Activadas por AMP / Hígado Graso / Hepatopatías Alcohólicas Tipo de estudio: Diagnostic_studies Límite: Animals / Humans / Male Idioma: En Revista: J Biol Chem Año: 2014 Tipo del documento: Article