Your browser doesn't support javascript.
loading
Metallization of vanadium dioxide driven by large phonon entropy.
Budai, John D; Hong, Jiawang; Manley, Michael E; Specht, Eliot D; Li, Chen W; Tischler, Jonathan Z; Abernathy, Douglas L; Said, Ayman H; Leu, Bogdan M; Boatner, Lynn A; McQueeney, Robert J; Delaire, Olivier.
Afiliación
  • Budai JD; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Hong J; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Manley ME; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Specht ED; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Li CW; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Tischler JZ; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Abernathy DL; Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Said AH; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Leu BM; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Boatner LA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • McQueeney RJ; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Delaire O; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
Nature ; 515(7528): 535-9, 2014 Nov 27.
Article en En | MEDLINE | ID: mdl-25383524
ABSTRACT
Phase competition underlies many remarkable and technologically important phenomena in transition metal oxides. Vanadium dioxide (VO2) exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled structural and electronic transition begin with two alternative starting points a Peierls MIT driven by instabilities in electron-lattice dynamics and a Mott MIT where strong electron-electron correlations drive charge localization. A key missing piece of the VO2 puzzle is the role of lattice vibrations. Moreover, a comprehensive thermodynamic treatment must integrate both entropic and energetic aspects of the transition. Here we report that the entropy driving the MIT in VO2 is dominated by strongly anharmonic phonons rather than electronic contributions, and provide a direct determination of phonon dispersions. Our ab initio calculations identify softer bonding in the tetragonal phase, relative to the monoclinic phase, as the origin of the large vibrational entropy stabilizing the metallic rutile phase. They further reveal how a balance between higher entropy in the metal and orbital-driven lower energy in the insulator fully describes the thermodynamic forces controlling the MIT. Our study illustrates the critical role of anharmonic lattice dynamics in metal oxide phase competition, and provides guidance for the predictive design of new materials.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Nature Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Revista: Nature Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos