Your browser doesn't support javascript.
loading
Olfactory deposition of inhaled nanoparticles in humans.
Garcia, Guilherme J M; Schroeter, Jeffry D; Kimbell, Julia S.
Afiliación
  • Garcia GJ; Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin , Milwaukee, WI , USA .
Inhal Toxicol ; 27(8): 394-403, 2015.
Article en En | MEDLINE | ID: mdl-26194036
ABSTRACT
CONTEXT Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.

OBJECTIVES:

This article aims to (i) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (ii) compare the olfactory dose in humans with our earlier dose estimates for rats. MATERIALS AND

METHODS:

An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1-100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature.

RESULTS:

In humans, olfactory dose of inhaled nanoparticles is highest for 1-2 nm particles with ∼1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. DISCUSSION AND

CONCLUSION:

Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans in the 1--7 nm size range due to the larger inhalation rate in humans. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Mucosa Olfatoria / Exposición por Inhalación / Nanopartículas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adult / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Inhal Toxicol Asunto de la revista: TOXICOLOGIA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Mucosa Olfatoria / Exposición por Inhalación / Nanopartículas Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adult / Animals / Female / Humans / Male / Middle aged Idioma: En Revista: Inhal Toxicol Asunto de la revista: TOXICOLOGIA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos