Your browser doesn't support javascript.
loading
Wnt10b Gain-of-Function Improves Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis.
Paik, David T; Rai, Meena; Ryzhov, Sergey; Sanders, Lehanna N; Aisagbonhi, Omonigho; Funke, Mitchell J; Feoktistov, Igor; Hatzopoulos, Antonis K.
Afiliación
  • Paik DT; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
  • Rai M; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
  • Ryzhov S; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
  • Sanders LN; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
  • Aisagbonhi O; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
  • Funke MJ; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
  • Feoktistov I; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
  • Hatzopoulos AK; From the Division of Cardiovascular Medicine, Department of Medicine (D.T.P., M.R., S.R., L.N.S., O.A., M.J.F., I.F., A.K.H.), Department of Cell and Developmental Biology (D.T.P., M.R., L.N.S., O.A., A.K.H.), and Department of Pharmacology, Vanderbilt University, Nashville, TN (I.F.); Center for Mo
Circ Res ; 117(9): 804-16, 2015 Oct 09.
Article en En | MEDLINE | ID: mdl-26338900
ABSTRACT
RATIONALE Myocardial infarction causes irreversible tissue damage, leading to heart failure. We recently discovered that canonical Wnt signaling and the Wnt10b ligand are strongly induced in mouse hearts after infarction. Wnt10b regulates cell fate in various organs, but its role in the heart is unknown.

OBJECTIVE:

To investigate the effect of Wnt10b gain-of-function on cardiac repair mechanisms and to assess its potential to improve ventricular function after injury. METHODS AND

RESULTS:

Histological and molecular analyses showed that Wnt10b is expressed in cardiomyocytes and localized in the intercalated discs of mouse and human hearts. After coronary artery ligation or cryoinjury in mice, Wnt10b is strongly and transiently induced in peri-infarct cardiomyocytes during granulation tissue formation. To determine the effect of Wnt10b on neovascularization and fibrosis, we generated a mouse line to increase endogenous Wnt10b levels in cardiomyocytes. We found that gain of Wnt10b function orchestrated a recovery phenotype characterized by robust neovascularization of the injury zone, less myofibroblasts, reduced scar size, and improved ventricular function compared with wild-type mice. Wnt10b stimulated expression of vascular endothelial growth factor receptor 2 in endothelial cells and angiopoietin-1 in vascular smooth muscle cells through nuclear factor-κB activation. These effects coordinated endothelial growth and smooth muscle cell recruitment, promoting robust formation of large, coronary-like blood vessels.

CONCLUSION:

Wnt10b gain-of-function coordinates arterial formation and attenuates fibrosis in cardiac tissue after injury. Because generation of mature blood vessels is necessary for efficient perfusion, our findings could lead to novel strategies to optimize the inherent repair capacity of the heart and prevent the onset of heart failure.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arteriolas / Miocitos Cardíacos / Proteínas Wnt / Miocardio Límite: Animals / Humans Idioma: En Revista: Circ Res Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Arteriolas / Miocitos Cardíacos / Proteínas Wnt / Miocardio Límite: Animals / Humans Idioma: En Revista: Circ Res Año: 2015 Tipo del documento: Article