Your browser doesn't support javascript.
loading
Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements.
Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi.
Afiliación
  • Chiken S; Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan.
  • Sato A; Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan National Institute for Basic Biology, Okazaki 444-8585, Japan.
  • Ohta C; Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
  • Kurokawa M; Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
  • Arai S; Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan.
  • Maeshima J; Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan.
  • Sunayama-Morita T; National Institute for Basic Biology, Okazaki 444-8585, Japan Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan.
  • Sasaoka T; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara 252-0374, Japan National Institute for Basic Biology, Okazaki 444-8585, Japan Department of Comparative
  • Nambu A; Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan.
Cereb Cortex ; 25(12): 4885-97, 2015 Dec.
Article en En | MEDLINE | ID: mdl-26443442
ABSTRACT
In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores de Dopamina D1 / Núcleo Entopeduncular / Actividad Motora / Corteza Motora / Neuronas Límite: Animals Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2015 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Receptores de Dopamina D1 / Núcleo Entopeduncular / Actividad Motora / Corteza Motora / Neuronas Límite: Animals Idioma: En Revista: Cereb Cortex Asunto de la revista: CEREBRO Año: 2015 Tipo del documento: Article País de afiliación: Japón