Your browser doesn't support javascript.
loading
Biomechanics of cell reorientation in a three-dimensional matrix under compression.
Yang, Lijie; Carrington, Léolène Jean; Erdogan, Begum; Ao, Mingfang; Brewer, Bryson M; Webb, Donna J; Li, Deyu.
Afiliación
  • Yang L; Department of Mechanical Engineering, Vanderbilt University, Nashville 37235, TN, USA.
  • Carrington LJ; Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA.
  • Erdogan B; Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA.
  • Ao M; Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA.
  • Brewer BM; Department of Mechanical Engineering, Vanderbilt University, Nashville 37235, TN, USA.
  • Webb DJ; Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville 37235, TN, USA. Electronic address: donna.webb@vanderbilt.edu.
  • Li D; Department of Mechanical Engineering, Vanderbilt University, Nashville 37235, TN, USA. Electronic address: deyu.li@vanderbilt.edu.
Exp Cell Res ; 350(1): 253-266, 2017 Jan 01.
Article en En | MEDLINE | ID: mdl-27919745
Although a number of studies have reported that cells cultured on a stretchable substrate align away from or perpendicular to the stretch direction, how cells sense and respond to compression in a three-dimensional (3D) matrix remains an open question. We analyzed the reorientation of human prostatic normal tissue fibroblasts (NAFs) and cancer-associated fibroblasts (CAFs) in response to 3D compression using a Fast Fourier Transform (FFT) method. Results show that NAFs align to specific angles upon compression while CAFs exhibit a random distribution. In addition, NAFs with enhanced contractile force induced by transforming growth factor ß (TGF-ß) behave in a similar way as CAFs. Furthermore, a theoretical model based on the minimum energy principle has been developed to provide insights into these observations. The model prediction is in agreement with the observed cell orientation patterns in several different experimental conditions, disclosing the important role of stress fibers and inherent cell contractility in cell reorientation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Mecánico / Técnicas de Cultivo de Célula / Fibras de Estrés / Fibroblastos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Exp Cell Res Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Mecánico / Técnicas de Cultivo de Célula / Fibras de Estrés / Fibroblastos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Exp Cell Res Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos