Multifrequency reconstruction for frequency-modulated bSSFP.
Magn Reson Med
; 78(6): 2226-2235, 2017 Dec.
Article
en En
| MEDLINE
| ID: mdl-28185310
PURPOSE: Banding artifacts in images acquired by balanced steady-state free precession (bSSFP) remain a challenge in MRI as they considerably reduce image quality, and diagnostic value deteriorates accordingly. As the steady-state tolerates small shifts in frequency, it is possible to acquire frequency-modulated bSSFP. Unfortunately, standard reconstructions of such measurements suffer from signal loss. Our study proposes a multifrequency reconstruction and demonstrates its capability of suppressing banding artifacts while retaining the high signal level of standard bSSFP. METHODS: Numerical simulations in vitro and in vivo measurements were performed using both standard bSSFP and frequency-modulated bSSFP. The modulated data were reconstructed using a multifrequency approach consisting of three steps: phase correction, multiple reconstructions for different assumed frequencies, and maximum intensity projection. RESULTS: Although standard bSSFP measurements showed banding artifacts that compromised the image quality, standard reconstructions of frequency-modulated acquisitions suffered from signal loss. In contrast, images reconstructed from frequency-modulated data using the proposed multifrequency reconstruction showed no visual bandings and featured a higher signal-to-noise ratio (SNR). The SNR gain for phantom and in vivo measurements ranged from 1.23 to 1.49. CONCLUSIONS: The presented multifrequency reconstruction for frequency-modulated bSSFP provides images showing no bandings and featuring high SNR in short scan times. Magn Reson Med 78:2226-2235, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Encéfalo
/
Imagen por Resonancia Magnética
/
Imagen Eco-Planar
/
Oído Interno
/
Pierna
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Magn Reson Med
Asunto de la revista:
DIAGNOSTICO POR IMAGEM
Año:
2017
Tipo del documento:
Article
País de afiliación:
Alemania