Your browser doesn't support javascript.
loading
Numerical evidence of hyperscaling violation in wetting transitions of the random-bond Ising model in d=2 dimensions.
Albano, Ezequiel V; Luque, Luciana; Trobo, Marta L; Binder, Kurt.
Afiliación
  • Albano EV; Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CCT-CONICET La Plata, UNLP, Calle 59 Nro. 789, (1900) La Plata, Argentina and Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
  • Luque L; Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CCT-CONICET La Plata, UNLP, Calle 59 Nro. 789, (1900) La Plata, Argentina and Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
  • Trobo ML; Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), CCT-CONICET La Plata, UNLP, Calle 59 Nro. 789, (1900) La Plata, Argentina and Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, Argentina.
  • Binder K; Institute für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
Phys Rev E ; 95(2-1): 022801, 2017 Feb.
Article en En | MEDLINE | ID: mdl-28297842
We performed extensive simulations of the random-bond Ising model confined between walls where competitive surface fields act. By properly taking the thermodynamic limit we unambiguously determined wetting transition points of the system, as extrapolation of localization-delocalization transitions of the interface between domains of different orientation driven by the respective fields. The finite-size scaling theory for wetting with short-range fields [E. V. Albano and K. Binder, Phys. Rev. Lett. 109, 036101 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.036101] establishes that the average magnetization of the sample, with critical exponent ß, is the proper order parameter for the study of wetting. While the hyperscaling relationship given by γ+2ß=ν_{∥}+ν_{⊥} requires ß=1/2 (γ=4, ν_{∥}=3, and ν_{⊥}=2), the thermodynamic scaling establishes that Δ_{s}=γ+ß, which in contrast requires ß=0 (Δ_{s}=4), where γ, ν_{∥}, ν_{⊥}, and Δ_{s} are the critical exponents of the susceptibility, the correlation lengths parallel and perpendicular to the interface, and the gap exponent, respectively. So, we formulate a finite-size scaling theory for wetting without hyperscaling and perform numerical simulations that provide strong evidence of hyperscaling violation (i.e., ß=0) and a direct measurement of the susceptibility critical exponent γ/ν_{⊥}=2.0±0.2, in agreement with theoretical results for the strong fluctuation regime of wetting transitions with quenched noise.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Phys Rev E Año: 2017 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Phys Rev E Año: 2017 Tipo del documento: Article País de afiliación: Argentina