Your browser doesn't support javascript.
loading
Sheet Collapsing Approach for Rubber-like Graphene Papers.
Xiao, Youhua; Xu, Zhen; Liu, Yingjun; Peng, Li; Xi, Jiabin; Fang, Bo; Guo, Fan; Li, Peng; Gao, Chao.
Afiliación
  • Xiao Y; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Xu Z; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Liu Y; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Peng L; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Xi J; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Fang B; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Guo F; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Li P; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
  • Gao C; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , 38 Zheda Road, Hangzhou 310027, People's Republic of China.
ACS Nano ; 11(8): 8092-8102, 2017 08 22.
Article en En | MEDLINE | ID: mdl-28777531
Understanding and modulating the conformation of graphene are pivotal in designing graphene macroscopic materials. Here, we revealed the sheet collapsing behavior of graphene oxide (GO) sheets by poor solvents in an analogy with linear macromolecules. Triggered by poor solvents, extended GO sheets in good solvents can collapse to hierarchically wrinkled conformations. The collapsing behavior of GO enabled the fabrication of amorphous self-standing GO and graphene papers with rich hierarchical wrinkles and folds over mutliple size scales. The collapsed GO and graphene papers had a rubber-like mechanical behavior with viscoelasticity. By our collapsing method, GO and graphene self-standing papers were designed to be stiff with high modulus or to become soft with low modulus of 100 MPa at a remarkably large breakage elongation up to 23%. Our philosophy of treating graphene as a 2D polymer enables the efficient control of molecular conformations of graphene and other 2D polymers and the design of macroscopic materials of 2D nanomaterials as in the polymer industry.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2017 Tipo del documento: Article