Your browser doesn't support javascript.
loading
On defining a unique phylogenetic tree with homoplastic characters.
Goloboff, Pablo A; Wilkinson, Mark.
Afiliación
  • Goloboff PA; Unidad Ejecutora Lillo, Fundación Miguel Lillo, CONICET, Miguel Lillo 251, 4000 San Miguel de Tucumán, Argentina. Electronic address: pablogolo@csnat.unt.edu.ar.
  • Wilkinson M; Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom.
Mol Phylogenet Evol ; 122: 95-101, 2018 05.
Article en En | MEDLINE | ID: mdl-29407481
This paper discusses the problem of whether creating a matrix with all the character state combinations that have a fixed number of steps (or extra steps) on a given tree T, produces the same tree T when analyzed with maximum parsimony or maximum likelihood. Exhaustive enumeration of cases up to 20 taxa for binary characters, and up to 12 taxa for 4-state characters, shows that the same tree is recovered (as unique most likely or most parsimonious tree) as long as the number of extra steps is within 1/4 of the number of taxa. This dependence, 1/4 of the number of taxa, is discussed with a general argumentation, in terms of the spread of the character changes on the tree used to select character state distributions. The present finding allows creating matrices which have as much homoplasy as possible for the most parsimonious or likely tree to be predictable, and examination of these matrices with hill-climbing search algorithms provides additional evidence on the (lack of a) necessary relationship between homoplasy and the ability of search methods to find optimal trees.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Filogenia / Algoritmos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Phylogenet Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Filogenia / Algoritmos Tipo de estudio: Prognostic_studies Idioma: En Revista: Mol Phylogenet Evol Asunto de la revista: BIOLOGIA / BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article