2R,4R-APDC, a Metabotropic Glutamate Receptor Agonist, Reduced Neuronal Apoptosis by Upregulating MicroRNA-128 in a Rat Model After Seizures.
Neurochem Res
; 43(3): 591-599, 2018 Mar.
Article
en En
| MEDLINE
| ID: mdl-29497903
This study aimed to study the protective effect of (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), a selective metabotropic glutamate receptor agonist, against hippocampal neuronal apoptosis induced by seizures in a rat model of pilocarpine-induced epilepsy. The Morris water maze test was used to assess the spatial memory abilities of epileptic rats with or without 2R,4R-APDC treatment. TUNEL assay was performed to examine neuronal apoptosis in hippocampus. Western blot was conducted to evaluate changes in the levels of caspase-3 and caspase-9 in hippocampus. Real-time PCR was used to determine the levels of microRNA-128 (miR-128) in hippocampus. The results of the Morris water maze test showed that the 2R,4R-APDC treatment reduced the escape latencies and swimming lengths of rats after seizures. The TUNEL assay showed that 2R,4R-APDC significantly counteracted seizure-induced cell apoptosis. The western blot confirmed this finding, demonstrating that the levels of cleaved caspase-3 and cleaved caspase-9 were potently decreased by 2R,4R-APDC in rat hippocampus after seizures. In addition, 2R,4R-APDC upregulated miR-128 expression levels in the hippocampus. A miR-128 mimic or inhibitor decreased or increased the percentage of TUNEL-positive cells in rats after seizures and 2R,4R-APDC treatment, respectively. The levels of both cleaved caspase-3 and cleaved caspase-9 were decreased in hippocampus exposed to the miR-128 mimic, whereas they were markedly increased in miR-128 inhibitor-treated hippocampus. In conclusion, 2R,4R-APDC protected hippocampal cells from cell apoptosis after seizures, possibly by upregulating miR-128.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Prolina
/
Regulación hacia Arriba
/
Receptores de Glutamato Metabotrópico
/
MicroARNs
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Neurochem Res
Año:
2018
Tipo del documento:
Article