Your browser doesn't support javascript.
loading
Combinatorial pathway engineering using type I-E CRISPR interference.
Tarasava, Katia; Liu, Rongming; Garst, Andrew; Gill, Ryan T.
Afiliación
  • Tarasava K; Chemical and Biological Engineering Department, University of Colorado Boulder, Boulder, Colorado.
  • Liu R; Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado.
  • Garst A; Muse Biotechnology, Boulder, Colorado.
  • Gill RT; Chemical and Biological Engineering Department, University of Colorado Boulder, Boulder, Colorado.
Biotechnol Bioeng ; 115(7): 1878-1883, 2018 07.
Article en En | MEDLINE | ID: mdl-29537074
ABSTRACT
Optimization of metabolic flux is a difficult and time-consuming process that often involves changing the expression levels of multiple genes simultaneously. While some pathways have a known rate limiting step, more complex metabolic networks can require a trial-and-error approach of tuning the expression of multiple genes to achieve a desired distribution of metabolic resources. Here we present an efficient method for generating expression diversity on a combinatorial scale using CRISPR interference. We use a modified native Escherichia coli Type I-E CRISPR-Cas system and an iterative cloning strategy for construction of guide RNA arrays. This approach allowed us to build a combinatorial gene expression library three orders of magnitude larger than previous studies. In less than 1 month, we generated ∼12,000 combinatorial gene expression variants that target six different genes and screened these variants for increased malonyl-CoA flux and 3-hydroxypropionate (3HP) production. We were able to identify a set of variants that exhibited a significant increase in malonyl-CoA flux and up to a 98% increase in 3HP production. This approach provides a fast and easy-to-implement strategy for engineering metabolic pathway flux for development of industrially relevant strains, as well as investigation of fundamental biological questions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácido Láctico / Escherichia coli / Redes y Vías Metabólicas / Ingeniería Metabólica / Sistemas CRISPR-Cas Idioma: En Revista: Biotechnol Bioeng Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ácido Láctico / Escherichia coli / Redes y Vías Metabólicas / Ingeniería Metabólica / Sistemas CRISPR-Cas Idioma: En Revista: Biotechnol Bioeng Año: 2018 Tipo del documento: Article