Your browser doesn't support javascript.
loading
GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M.
Afiliación
  • Abbott BP; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott R; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott TD; Louisiana State University, Baton Rouge, Louisiana 70803, USA.
  • Acernese F; Università di Salerno, Fisciano, I-84084 Salerno, Italy.
  • Ackley K; INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy.
  • Adams C; University of Florida, Gainesville, Florida 32611, USA.
  • Adams T; OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia.
  • Addesso P; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
  • Adhikari RX; Laboratoire d'Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France.
  • Adya VB; University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy.
  • Affeldt C; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Afrough M; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Agarwal B; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Agathos M; The University of Mississippi, University, Mississippi 38677, USA.
  • Agatsuma K; NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Aggarwal N; University of Cambridge, Cambridge CB2 1TN, United Kingdom.
  • Aguiar OD; Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands.
  • Aiello L; LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Ain A; Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil.
  • Ajith P; Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy.
  • Allen B; INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy.
  • Allen G; Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India.
  • Allocca A; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India.
  • Altin PA; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Amato A; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Ananyeva A; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Anderson SB; NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Anderson WG; Università di Pisa, I-56127 Pisa, Italy.
  • Angelova SV; INFN, Sezione di Pisa, I-56127 Pisa, Italy.
  • Antier S; OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
  • Appert S; Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France.
  • Arai K; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Araya MC; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Areeda JS; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Arnaud N; SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom.
  • Arun KG; LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France.
  • Ascenzi S; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ashton G; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ast M; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Aston SM; California State University Fullerton, Fullerton, California 92831, USA.
  • Astone P; LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France.
  • Atallah DV; European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy.
  • Aufmuth P; Chennai Mathematical Institute, Chennai 603103, India.
  • Aulbert C; Università di Roma Tor Vergata, I-00133 Roma, Italy.
  • AultONeal K; INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy.
  • Austin C; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Avila-Alvarez A; Universität Hamburg, D-22761 Hamburg, Germany.
  • Babak S; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
  • Bacon P; INFN, Sezione di Roma, I-00185 Roma, Italy.
  • Bader MKM; Cardiff University, Cardiff CF24 3AA, United Kingdom.
Phys Rev Lett ; 120(9): 091101, 2018 Mar 02.
Article en En | MEDLINE | ID: mdl-29547330
ABSTRACT
The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25 Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25 Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos