Your browser doesn't support javascript.
loading
The carbohydrate-binding module and linker of a modular lytic polysaccharide monooxygenase promote localized cellulose oxidation.
Courtade, Gaston; Forsberg, Zarah; Heggset, Ellinor B; Eijsink, Vincent G H; Aachmann, Finn L.
Afiliación
  • Courtade G; From NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491 Trondheim, Norway.
  • Forsberg Z; the Faculty of Chemistry, Biotechnology and Food Science, NMBU Norwegian University of Life Sciences, N-1432 Ås, Norway, and.
  • Heggset EB; RISE PFI AS, Høgskoleringen 6b, N-7491 Trondheim, Norway.
  • Eijsink VGH; the Faculty of Chemistry, Biotechnology and Food Science, NMBU Norwegian University of Life Sciences, N-1432 Ås, Norway, and.
  • Aachmann FL; From NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, N-7491 Trondheim, Norway, finn.l.aachmann@ntnu.no.
J Biol Chem ; 293(34): 13006-13015, 2018 08 24.
Article en En | MEDLINE | ID: mdl-29967065
ABSTRACT
Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze the oxidative cleavage of polysaccharides such as cellulose and chitin, a feature that makes them key tools in industrial biomass conversion processes. The catalytic domains of a considerable fraction of LPMOs and other carbohydrate-active enzymes (CAZymes) are tethered to carbohydrate-binding modules (CBMs) by flexible linkers. These linkers preclude X-ray crystallographic studies, and the functional implications of these modular assemblies remain partly unknown. Here, we used NMR spectroscopy to characterize structural and dynamic features of full-length modular ScLPMO10C from Streptomyces coelicolor We observed that the linker is disordered and extended, creating distance between the CBM and the catalytic domain and allowing these domains to move independently of each other. Functional studies with cellulose nanofibrils revealed that most of the substrate-binding affinity of full-length ScLPMO10C resides in the CBM. Comparison of the catalytic performance of full-length ScLPMO10C and its isolated catalytic domain revealed that the CBM is beneficial for LPMO activity at lower substrate concentrations and promotes localized and repeated oxidation of the substrate. Taken together, these results provide a mechanistic basis for understanding the interplay between catalytic domains linked to CBMs in LPMOs and CAZymes in general.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Celulosa / Streptomyces coelicolor / Polisacáridos Fúngicos / Oxigenasas de Función Mixta Idioma: En Revista: J Biol Chem Año: 2018 Tipo del documento: Article País de afiliación: Noruega

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Celulosa / Streptomyces coelicolor / Polisacáridos Fúngicos / Oxigenasas de Función Mixta Idioma: En Revista: J Biol Chem Año: 2018 Tipo del documento: Article País de afiliación: Noruega