Your browser doesn't support javascript.
loading
In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex.
Wang, Xindan; Hughes, Anna C; Brandão, Hugo B; Walker, Benjamin; Lierz, Carrie; Cochran, Jared C; Oakley, Martha G; Kruse, Andrew C; Rudner, David Z.
Afiliación
  • Wang X; Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: xindan@indiana.edu.
  • Hughes AC; Department of Biology, Indiana University, Bloomington, IN 47405, USA.
  • Brandão HB; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
  • Walker B; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
  • Lierz C; Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
  • Cochran JC; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
  • Oakley MG; Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
  • Kruse AC; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
  • Rudner DZ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Electronic address: rudner@hms.harvard.edu.
Mol Cell ; 71(5): 841-847.e5, 2018 09 06.
Article en En | MEDLINE | ID: mdl-30100265
Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms, but how they function remains incompletely understood. Recent studies in bacteria and eukaryotes have led to a unifying model in which these ring-shaped ATPases act along contiguous DNA segments, processively enlarging DNA loops. In support of this model, single-molecule imaging experiments indicate that Saccharomyces cerevisiae condensin complexes can extrude DNA loops in an ATP-hydrolysis-dependent manner in vitro. Here, using time-resolved high-throughput chromosome conformation capture (Hi-C), we investigate the interplay between ATPase activity of the Bacillus subtilis SMC complex and loop formation in vivo. We show that point mutants in the SMC nucleotide-binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacillus subtilis / Translocación Genética / ADN / Cromosomas Bacterianos / Adenosina Trifosfatasas / Complejos Multiproteicos / Proteínas de Unión al ADN Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bacillus subtilis / Translocación Genética / ADN / Cromosomas Bacterianos / Adenosina Trifosfatasas / Complejos Multiproteicos / Proteínas de Unión al ADN Idioma: En Revista: Mol Cell Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article