Your browser doesn't support javascript.
loading
Mechanical Loading Differentially Affects Osteocytes in Fibulae from Lactating Mice Compared to Osteocytes in Virgin Mice: Possible Role for Lacuna Size.
Hemmatian, Haniyeh; Jalali, Rozita; Semeins, Cornelis M; Hogervorst, Jolanda M A; van Lenthe, G Harry; Klein-Nulend, Jenneke; Bakker, Astrid D.
Afiliación
  • Hemmatian H; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
  • Jalali R; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
  • Semeins CM; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
  • Hogervorst JMA; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
  • van Lenthe GH; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
  • Klein-Nulend J; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
  • Bakker AD; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands. j.kleinnulend@acta.nl.
Calcif Tissue Int ; 103(6): 675-685, 2018 12.
Article en En | MEDLINE | ID: mdl-30109376
Hormonal changes during lactation are associated with profound changes in bone cell biology, such as osteocytic osteolysis, resulting in larger lacunae. Larger lacuna shape theoretically enhances the transmission of mechanical signals to osteocytes. We aimed to provide experimental evidence supporting this theory by comparing the mechanoresponse of osteocytes in the bone of lactating mice, which have enlarged lacunae due to osteocytic osteolysis, with the response of osteocytes in bone from age-matched virgin mice. The osteocyte mechanoresponse was measured in excised fibulae that were cultured in hormone-free medium for 24 h and cyclically loaded for 10 min (sinusoidal compressive load, 3000 µÎµ, 5 Hz) by quantifying loading-related changes in Sost mRNA expression (qPCR) and sclerostin and ß-catenin protein expression (immunohistochemistry). Loading decreased Sost expression by ~ threefold in fibulae of lactating mice. The loading-induced decrease in sclerostin protein expression by osteocytes was larger in lactating mice (55% decrease ± 14 (± SD), n = 8) than virgin mice (33% decrease ± 15, n = 7). Mechanical loading upregulated ß-catenin expression in osteocytes in lactating mice by 3.5-fold (± 0.2, n = 6) which is significantly (p < 0.01) higher than the 1.6-fold increase in ß-catenin expression by osteocytes in fibulae from virgin mice (± 0.12, n = 4). These results suggest that osteocytes in fibulae from lactating mice with large lacunae may respond stronger to mechanical loading than those from virgin mice. This could indicate that osteocytes residing in larger lacuna show a stronger response to mechanical loading.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteocitos / Lactancia / Remodelación Ósea / Mecanotransducción Celular / Peroné Límite: Animals Idioma: En Revista: Calcif Tissue Int Año: 2018 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Osteocitos / Lactancia / Remodelación Ósea / Mecanotransducción Celular / Peroné Límite: Animals Idioma: En Revista: Calcif Tissue Int Año: 2018 Tipo del documento: Article País de afiliación: Bélgica