Your browser doesn't support javascript.
loading
Ridge estimation of network models from time-course omics data.
Miok, Viktorian; Wilting, Saskia M; van Wieringen, Wessel N.
Afiliación
  • Miok V; Department of Pathology, VU University Medical Center, MB, Amsterdam, The Netherlands.
  • Wilting SM; Department of Epidemiology and Biostatistics, Amsterdam School of Public Health, VU University Medical Center, MB, Amsterdam, The Netherlands.
  • van Wieringen WN; Department of Pathology, VU University Medical Center, MB, Amsterdam, The Netherlands.
Biom J ; 61(2): 391-405, 2019 03.
Article en En | MEDLINE | ID: mdl-30136415
Time-course omics experiments enable the reconstruction of the dynamics of the cellular regulatory network. Here, we describe the means for this reconstruction and the downstream exploitation of the inferred network. It is assumed that one of the various vector-autoregressive models (VAR) models presented here serves as a reasonably accurate description of the time-course omics data. The models are estimated through ridge penalized likelihood maximization, accompanied by functionality for the determination of optimal penalty paramaters. Prior knowledge on the network topology is accommodated by the estimation procedures. Various routes that translate the fitted models into more tangible implications for the medical researcher are described. The network is inferred from the-nonsparse-ridge estimates through empirical Bayes probabilistic thresholding. The influence of a (trait of a) molecular entity at the current time on those at future time points is assessed by mutual information, impulse response analysis, and path decomposition of the covariance. The presented methodology is applied to the omics data from the p53 signaling pathway during HPV-induced cellular transformation. All methodology is implemented in the ragt2ridges package, freely available from the Comprehensive R Archive Network.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Estadísticos / Biología Computacional Tipo de estudio: Diagnostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Biom J Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Estadísticos / Biología Computacional Tipo de estudio: Diagnostic_studies / Risk_factors_studies Límite: Female / Humans Idioma: En Revista: Biom J Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos