Your browser doesn't support javascript.
loading
Differentiation enhances Zika virus infection of neuronal brain cells.
Sánchez-San Martín, Claudia; Li, Tony; Bouquet, Jerome; Streithorst, Jessica; Yu, Guixia; Paranjpe, Aditi; Chiu, Charles Y.
Afiliación
  • Sánchez-San Martín C; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA.
  • Li T; Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.
  • Bouquet J; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA.
  • Streithorst J; Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.
  • Yu G; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA.
  • Paranjpe A; Department of Laboratory Medicine, University of California, San Francisco, CA, 94107, USA.
  • Chiu CY; UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, 91407, USA.
Sci Rep ; 8(1): 14543, 2018 09 28.
Article en En | MEDLINE | ID: mdl-30266962
ABSTRACT
Zika virus (ZIKV) is an emerging, mosquito-borne pathogen associated with a widespread 2015-2016 epidemic in the Western Hemisphere and a proven cause of microcephaly and other fetal brain defects in infants born to infected mothers. ZIKV infections have been also linked to other neurological illnesses in infected adults and children, including Guillain-Barré syndrome (GBS), acute flaccid paralysis (AFP) and meningoencephalitis, but the viral pathophysiology behind those conditions remains poorly understood. Here we investigated ZIKV infectivity in neuroblastoma SH-SY5Y cells, both undifferentiated and following differentiation with retinoic acid. We found that multiple ZIKV strains, representing both the prototype African and contemporary Asian epidemic lineages, were able to replicate in SH-SY5Y cells. Differentiation with resultant expression of mature neuron markers increased infectivity in these cells, and the extent of infectivity correlated with degree of differentiation. New viral particles in infected cells were visualized by electron microscopy and found to be primarily situated inside vesicles; overt damage to the Golgi apparatus was also observed. Enhanced ZIKV infectivity in a neural cell line following differentiation may contribute to viral neuropathogenesis in the developing or mature central nervous system.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Virus Zika / Infección por el Virus Zika / Neuronas Límite: Humans Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Virus Zika / Infección por el Virus Zika / Neuronas Límite: Humans Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos