Your browser doesn't support javascript.
loading
Deep scanning lysine metabolism in Escherichia coli.
Bassalo, Marcelo C; Garst, Andrew D; Choudhury, Alaksh; Grau, William C; Oh, Eun J; Spindler, Eileen; Lipscomb, Tanya; Gill, Ryan T.
Afiliación
  • Bassalo MC; Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
  • Garst AD; Inscripta, Inc., Boulder, CO, USA.
  • Choudhury A; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
  • Grau WC; Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
  • Oh EJ; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
  • Spindler E; Inscripta, Inc., Boulder, CO, USA.
  • Lipscomb T; Inscripta, Inc., Boulder, CO, USA.
  • Gill RT; Inscripta, Inc., Boulder, CO, USA rygi0567@colorado.edu.
Mol Syst Biol ; 14(11): e8371, 2018 11 26.
Article en En | MEDLINE | ID: mdl-30478237
ABSTRACT
Our limited ability to predict genotype-phenotype relationships has called for strategies that allow testing of thousands of hypotheses in parallel. Deep scanning mutagenesis has been successfully implemented to map genotype-phenotype relationships at a single-protein scale, allowing scientists to elucidate properties that are difficult to predict. However, most phenotypes are dictated by several proteins that are interconnected through complex and robust regulatory and metabolic networks. These sophisticated networks hinder our understanding of the phenotype of interest and limit our capabilities to rewire cellular functions. Here, we leveraged CRISPR-EnAbled Trackable genome Engineering to attempt a parallel and high-resolution interrogation of complex networks, deep scanning multiple proteins associated with lysine metabolism in Escherichia coli We designed over 16,000 mutations to perturb this pathway and mapped their contribution toward resistance to an amino acid analog. By doing so, we identified different routes that can alter pathway function and flux, uncovering mechanisms that would be difficult to rationally design. This approach sets a framework for forward investigation of complex multigenic phenotypes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Escherichia coli / Redes y Vías Metabólicas / Lisina / Mutación Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Escherichia coli / Redes y Vías Metabólicas / Lisina / Mutación Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos