Formamidinium Incorporation into Compact Lead Iodide for Low Band Gap Perovskite Solar Cells with Open-Circuit Voltage Approaching the Radiative Limit.
ACS Appl Mater Interfaces
; 11(9): 9083-9092, 2019 Mar 06.
Article
en En
| MEDLINE
| ID: mdl-30735027
To bring hybrid lead halide perovskite solar cells toward the Shockley-Queisser limit requires lowering the band gap while simultaneously increasing the open-circuit voltage. This, to some extent divergent objective, may demand the use of large cations to obtain a perovskite with larger lattice parameter together with a large crystal size to minimize interface nonradiative recombination. When applying the two-step method for a better crystal control, it is rather challenging to fabricate perovskites with FA+ cations, given the small penetration depth of such large ions into a compact PbI2 film. In here, to successfully incorporate such large cations, we used a high-concentration solution of the organic precursor containing small Cl- anions achieving, via a solvent annealing-controlled dissolution-recrystallization, larger than 1 µm perovskite crystals in a solar cell. This solar cell, with a largely increased fluorescence quantum yield, exhibited an open-circuit voltage equivalent to 93% of the corresponding radiative limit one. This, together with the low band gap achieved (1.53 eV), makes the fabricated perovskite cell one of the closest to the Shockley-Queisser optimum.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
España