Your browser doesn't support javascript.
loading
Supramolecular Nanofibers with Superior Bioactivity to Insulin-Like Growth Factor-I.
Shang, Yuna; Zhi, Dengke; Feng, Guowei; Wang, Zhongyan; Mao, Duo; Guo, Shuang; Liu, Ruihua; Liu, Lulu; Zhang, Shuhao; Sun, Shenghuan; Wang, Kai; Kong, Deling; Gao, Jie; Yang, Zhimou.
Afiliación
  • Shang Y; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Zhi D; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Feng G; Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy , Tianjin's Clinical Research Center for Cancer , Tianjin 300060 , P. R. China.
  • Wang Z; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Mao D; Department of Chemical and Biomolecular Engineering , National University of Singapore , Engineering Drive 4 , Singapore , 117585.
  • Guo S; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Liu R; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Liu L; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Zhang S; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Sun S; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Wang K; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Kong D; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Gao J; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
  • Yang Z; Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials , Nankai University , Tianjin 300071 , P. R.
Nano Lett ; 19(3): 1560-1569, 2019 03 13.
Article en En | MEDLINE | ID: mdl-30789273
ABSTRACT
Bioactive peptides derived from proteins generally need to be folded into secondary structures to activate downstream signaling pathways. However, synthetic peptides typically form random-coils, thus losing their bioactivities. Here, we show that by introducing a self-assembling peptide motif and using different preparation pathways, a peptide from insulin-like growth factor-I (IGF-1) can be folded into an α-helix and ß-sheet. The ß-sheet one exhibits a low dissociation constant to the IGF-1 receptor (IGF-1R, 11.5 nM), which is only about 3 times higher than that of IGF-1 (4.3 nM). However, the α-helical one and the peptide without self-assembling motif show weak affinities to IGF-1R ( KD = 179.1 and 321.6 nM, respectively). At 10 nM, the ß-sheet one efficiently activates the IGF-1 downstream pathway, significantly enhancing HUVEC proliferation and preventing cell apoptosis. The ß-sheet peptide shows superior performance to IGF-1 in vivo, and it improves ischemic hind-limb salvage by significantly reducing muscle degradation and enhancing limb vascularization. Our study provides a useful strategy to constrain peptides into different conformations, which may lead to the development of supramolecular nanomaterials mimicking biofunctional proteins.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Factor I del Crecimiento Similar a la Insulina / Receptor IGF Tipo 1 / Nanofibras Límite: Humans Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Péptidos / Factor I del Crecimiento Similar a la Insulina / Receptor IGF Tipo 1 / Nanofibras Límite: Humans Idioma: En Revista: Nano Lett Año: 2019 Tipo del documento: Article