Your browser doesn't support javascript.
loading
A conductive cell-imprinted substrate based on CNT-PDMS composite.
Kavand, Hanie; Rahaie, Mahdi; Koohsorkhi, Javad; Haghighipour, Nooshin; Bonakdar, Shahin.
Afiliación
  • Kavand H; Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
  • Rahaie M; Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
  • Koohsorkhi J; Advanced Micro and Nano Devices Lab, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
  • Haghighipour N; National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
  • Bonakdar S; National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
Biotechnol Appl Biochem ; 66(3): 445-453, 2019 May.
Article en En | MEDLINE | ID: mdl-30817028
ABSTRACT
Cell function regulation is influenced by continuous biochemical and biophysical signal exchange within the body. Substrates with nano/micro-scaled topographies that mimic the physiological niche are widely applied for tissue engineering applications. As the cartilage niche is composed of several stimulating factors, a multifunctional substrate providing topographical features while having the capability of electrical stimulation is presented. Herein, we demonstrate a biocompatible and conductive chondrocyte cell-imprinted substrate using polydimethylsiloxane (PDMS) and carbon nanotubes (CNTs) as conductive fillers. Unlike the conventional silicon wafers or structural photoresist masters used for molding, cell surface topographical replication is challenging as biological cells showed extremely sensitive to chemical solvent residues during molding. The composite showed no significant difference compared with PDMS with regard to cytotoxicity, whereas an enhanced cell adhesion was observed on the conductive composite's surface. Integration of nanomaterials into the cell seeding scaffolds can make tissue regeneration process more efficient.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Técnicas de Cultivo de Célula / Condrocitos / Nanotubos de Carbono / Dimetilpolisiloxanos Límite: Animals Idioma: En Revista: Biotechnol Appl Biochem Asunto de la revista: BIOQUIMICA / BIOTECNOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Materiales Biocompatibles / Técnicas de Cultivo de Célula / Condrocitos / Nanotubos de Carbono / Dimetilpolisiloxanos Límite: Animals Idioma: En Revista: Biotechnol Appl Biochem Asunto de la revista: BIOQUIMICA / BIOTECNOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Irán