Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam).
J Environ Manage
; 237: 476-487, 2019 May 01.
Article
en En
| MEDLINE
| ID: mdl-30825780
Understanding spatial patterns of forest fire is of key important for fire danger management and ecological implication. This aim of this study was to propose a new machine learning methodology for analyzing and predicting spatial patterns of forest fire danger with a case study of tropical forest fire at Lao Cai province (Vietnam). For this purpose, a Geographical Information System (GIS) database for the study area was established, including ten influencing factors (slope, aspect, elevation, land use, distance to road, normalized difference vegetation index, rainfall, temperature, wind speed, and humidity) and 257 fire locations. The relevance level of these factors with the forest fire was analyzed and assessed using the Mutual Information algorithm. Then, a new hybrid artificial intelligence model named as MARS-DFP, which was Multivariate Adaptive Regression Splines (MARS) optimized by Differential Flower Pollination (DFP), was proposed and used construct forest fire model for generating spatial patterns of forest fire. MARS is employed to build the forest fire model for generalizing a classification boundary that distinguishes fire and non-fire areas, whereas DFP, a metaheuristic approach, was utilized to optimize the model. Finally, global prediction performance of the model was assessed using Area Under the curve (AUC), Classification Accuracy Rate (CAR), Wilcoxon signed-rank test, and various statistical indices. The result demonstrated that the predictive performance of the MARS-DFP model was high (AUCâ¯=â¯0.91 and CARâ¯=â¯86.57%) and better to those of other benchmark methods, Backpropagation Artificial Neural Network, Adaptive neuro fuzzy inference system, Radial Basis Function Neural Network. This fact confirms that the newly constructed MARS-DFP model is a promising alternative for spatial prediction of forest fire susceptibility.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Incendios Forestales
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
País/Región como asunto:
Asia
Idioma:
En
Revista:
J Environ Manage
Año:
2019
Tipo del documento:
Article