Improving Drug Discovery by Nucleic Acid Delivery in Engineered Human Microlivers.
Cell Metab
; 29(3): 727-735.e3, 2019 03 05.
Article
en En
| MEDLINE
| ID: mdl-30840913
The liver plays a central role in metabolism; however, xenobiotic metabolism variations between human hepatocytes and those in model organisms create challenges in establishing functional test beds to detect the potential drug toxicity and efficacy of candidate small molecules. In the emerging areas of RNA interference, viral gene therapy, and genome editing, more robust, long-lasting, and predictive human liver models may accelerate progress. Here, we apply a new modality to a previously established, functionally stable, multi-well bioengineered microliver-fabricated from primary human hepatocytes and supportive stromal cells-in order to advance both small molecule and nucleic acid therapeutic pipelines. Specifically, we achieve robust and durable gene silencing in vitro to tune the human metabolism of small molecules, and demonstrate its capacity to query the potential efficacy and/or toxicity of candidate therapeutics. Additionally, we apply this engineered platform to test siRNAs designed to target hepatocytes and impact human liver genetic and infectious diseases.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Células del Estroma
/
Hepatocitos
/
ARN Interferente Pequeño
/
Interferencia de ARN
/
Descubrimiento de Drogas
/
Hígado
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Cell Metab
Asunto de la revista:
METABOLISMO
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos