Your browser doesn't support javascript.
loading
Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy.
Mein, Stewart; Dokic, Ivana; Klein, Carmen; Tessonnier, Thomas; Böhlen, Till Tobias; Magro, Guiseppe; Bauer, Julia; Ferrari, Alfredo; Parodi, Katia; Haberer, Thomas; Debus, Jürgen; Abdollahi, Amir; Mairani, Andrea.
Afiliación
  • Mein S; Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
  • Dokic I; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
  • Klein C; Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Tessonnier T; National Center for Tumor Diseases (NCT), Heidelberg, Germany.
  • Böhlen TT; Heidelberg University, Faculty of Physics, Heidelberg, Germany.
  • Magro G; Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
  • Bauer J; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
  • Ferrari A; Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Parodi K; National Center for Tumor Diseases (NCT), Heidelberg, Germany.
  • Haberer T; Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
  • Debus J; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.
  • Abdollahi A; Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Mairani A; National Center for Tumor Diseases (NCT), Heidelberg, Germany.
Radiat Oncol ; 14(1): 123, 2019 Jul 11.
Article en En | MEDLINE | ID: mdl-31296232
BACKGROUND: Helium (4He) ion beam therapy provides favorable biophysical characteristics compared to currently administered particle therapies, i.e., reduced lateral scattering and enhanced biological damage to deep-seated tumors like heavier ions, while simultaneously lessened particle fragmentation in distal healthy tissues as observed with lighter protons. Despite these biophysical advantages, raster-scanning 4He ion therapy remains poorly explored e.g., clinical translational is hampered by the lack of reliable and robust estimation of physical and radiobiological uncertainties. Therefore, prior to the upcoming 4He ion therapy program at the Heidelberg Ion-beam Therapy Center (HIT), we aimed to characterize the biophysical phenomena of 4He ion beams and various aspects of the associated models for clinical integration. METHODS: Characterization of biological effect for 4He ion beams was performed in both homogenous and patient-like treatment scenarios using innovative models for estimation of relative biological effectiveness (RBE) in silico and their experimental validation using clonogenic cell survival as the gold-standard surrogate. Towards translation of RBE models in patients, the first GPU-based treatment planning system (non-commercial) for raster-scanning 4He ion beams was devised in-house (FRoG). RESULTS: Our data indicate clinically relevant uncertainty of ±5-10% across different model simulations, highlighting their distinct biological and computational methodologies. The in vitro surrogate for highly radio-resistant tissues presented large RBE variability and uncertainty within the clinical dose range. CONCLUSIONS: Existing phenomenological and mechanistic/biophysical models were successfully integrated and validated in both Monte Carlo and GPU-accelerated analytical platforms against in vitro experiments, and tested using pristine peaks and clinical fields in highly radio-resistant tissues where models exhibit the greatest RBE uncertainty. Together, these efforts mark an important step towards clinical translation of raster-scanning 4He ion beam therapy to the clinic.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Carcinoma de Células Renales / Método de Montecarlo / Helio / Neoplasias Renales Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Qualitative_research Límite: Humans Idioma: En Revista: Radiat Oncol Asunto de la revista: NEOPLASIAS / RADIOTERAPIA Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Planificación de la Radioterapia Asistida por Computador / Carcinoma de Células Renales / Método de Montecarlo / Helio / Neoplasias Renales Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Qualitative_research Límite: Humans Idioma: En Revista: Radiat Oncol Asunto de la revista: NEOPLASIAS / RADIOTERAPIA Año: 2019 Tipo del documento: Article País de afiliación: Alemania