Your browser doesn't support javascript.
loading
AI-Based Early Change Detection in Smart Living Environments.
Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro.
Afiliación
  • Diraco G; CNR-National Research Council of Italy, IMM-Institute for Microelectronics and Microsystems, 73100 Lecce, Italy. giovanni.diraco@cnr.it.
  • Leone A; CNR-National Research Council of Italy, IMM-Institute for Microelectronics and Microsystems, 73100 Lecce, Italy.
  • Siciliano P; CNR-National Research Council of Italy, IMM-Institute for Microelectronics and Microsystems, 73100 Lecce, Italy.
Sensors (Basel) ; 19(16)2019 Aug 14.
Article en En | MEDLINE | ID: mdl-31416259
In the smart environments we live today, a great variety of heterogeneous sensors are being increasingly deployed with the aim of providing more and more value-added services. This huge availability of sensor data, together with emerging Artificial Intelligence (AI) methods for Big Data analytics, can yield a wide array of actionable insights to help older adults continue to live independently with minimal support of caregivers. In this regard, there is a growing demand for technological solutions able to monitor human activities and vital signs in order to early detect abnormal conditions, avoiding the caregivers' daily check of the care recipient. The aim of this study is to compare state-of-the-art machine and deep learning techniques suitable for detecting early changes in human behavior. At this purpose, specific synthetic data are generated, including activities of daily living, home locations in which such activities take place, and vital signs. The achieved results demonstrate the superiority of unsupervised deep-learning techniques over traditional supervised/semi-supervised ones in terms of detection accuracy and lead-time of prediction.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies Idioma: En Revista: Sensors (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Italia