Your browser doesn't support javascript.
loading
Performance evaluation of microbial fuel cell for landfill leachate treatment: Research updates and synergistic effects of hybrid systems.
Elmaadawy, Khaled; Liu, Bingchuan; Hu, Jingping; Hou, Huijie; Yang, Jiakuan.
Afiliación
  • Elmaadawy K; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China.
  • Liu B; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China. Electronic address: bingchuan@hust.edu.cn.
  • Hu J; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of S
  • Hou H; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China.
  • Yang J; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of S
J Environ Sci (China) ; 96: 1-20, 2020 Oct.
Article en En | MEDLINE | ID: mdl-32819684
ABSTRACT
Over half of century, sanitary landfill was and is still the most economical treatment strategy for solid waste disposal, but the environmental risks associated with the leachate have brought attention of scientists for its proper treatment to avoid surface and ground water deterioration. Most of the treatment technologies are energy-negative and cost intensive processes, which are unable to meet current environmental regulations. There are continuous demands of alternatives concomitant with positive energy and high effluent quality. Microbial fuel cells (MFCs) were launched in the last two decades as a potential treatment technology with bioelectricity generation accompanied with simultaneous carbon and nutrient removal. This study reviews capability and mechanisms of carbon, nitrogen and phosphorous removal from landfill leachate through MFC technology, as well as summarizes and discusses the recent advances of standalone and hybrid MFCs performances in landfill leachate (LFL) treatment. Recent improvements and synergetic effect of hybrid MFC technology upon the increasing of power densities, organic and nutrient removal, and future challenges were discussed in details.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Fuentes de Energía Bioeléctrica / Eliminación de Residuos Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Fuentes de Energía Bioeléctrica / Eliminación de Residuos Idioma: En Revista: J Environ Sci (China) Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: China