Your browser doesn't support javascript.
loading
Selectivity Map for the Late Stages of CO and CO2 Reduction to C2 Species on Copper Electrodes.
Piqué, Oriol; Low, Qi Hang; Handoko, Albertus D; Yeo, Boon Siang; Calle-Vallejo, Federico.
Afiliación
  • Piqué O; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
  • Low QH; Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
  • Handoko AD; Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS), 7 Engineering Drive 1, Building E3A, #06-01, Singapore, 117574, Singapore.
  • Yeo BS; Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore.
  • Calle-Vallejo F; Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
Angew Chem Int Ed Engl ; 60(19): 10784-10790, 2021 May 03.
Article en En | MEDLINE | ID: mdl-33527641
The electrochemical CO and CO2 reduction reactions (CORR and CO2 RR) using copper catalysts and renewable electricity hold promise as a carbon-neutral route to produce commodity chemicals and fuels. However, the exact mechanisms and structure sensitivity of Cu electrodes toward C2 products are still under debate. Herein, we investigate ethylene oxide reduction (EOR) as a proxy to the late stages of CORR to ethylene, and the results are compared to those of acetaldehyde reduction to ethanol. Density functional theory (DFT) calculations show that ethylene oxide undergoes ring opening before exclusively reducing to ethylene via *OH formation. Based on generalized coordination numbers (CN), a selectivity map for the late stages of CORR and CO2 RR shows that sites with moderate coordination (5.9 < CN < 7.5) are efficient for ethylene production, with pristine Cu(100) being more active than defective surfaces such as Cu(311). In contrast, kinks and edges are more active for ethanol production, while (111) terraces are relatively inert.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2021 Tipo del documento: Article País de afiliación: España