Early detection of redox imbalance in the APPswe/PS1dE9 mouse model of Alzheimer's disease by in vivo electron paramagnetic resonance imaging.
Free Radic Biol Med
; 172: 9-18, 2021 08 20.
Article
en En
| MEDLINE
| ID: mdl-34058322
Alzheimer's disease (AD) is a common neurodegenerative disease that causes progressive cognitive decline. Deposition of amyloid-ß (Aß) peptides is the most important pathophysiological hallmark of AD. Oxidative stress induced by the generation of reactive oxygen species (ROS) is a prominent phenomenon in AD and is known to occur early in its course. Several reports have suggested a relationship between changes in redox status and AD pathology, including progressive Aß deposition, glial cell activation, and inflammation. In the present study, we employed a newly designed three-dimensional continuous-wave digital electron paramagnetic resonance (EPR) imager with a blood-brain barrier (BBB)-permeable redox-sensitive piperidine nitroxide probe, 4-oxo-2,2,6,6-tetramethyl-piperidine-d16-1-oxyl, for early detection of changed brain redox status. Using this system, we noninvasively compared age-matched 7-month-old AD model mice with normal littermates (WT mice). The obtained brain redox images of AD and WT mice clearly showed impaired brain redox status of AD mice compared to WT, suggesting that oxidative damage had already increased in 7-month-old AD mice compared with age-matched WT mice. The pathological changes in 7-month-old mice in this study were detected earlier than in previous studies in which only AD mice older than 9 months of age could be imaged. Since EPR images suggested that oxidative damage was already increased in 7-month-old AD mice compared to age-matched WT mice, we also evaluated antioxidant levels and the activity of superoxide dismutase (SOD) in brain tissue homogenates of 7-month-old AD and WT mice. Compared to WT mice, decreased levels of glutathione and mitochondrial SOD activity were found in AD mice, which supports the EPR imaging results indicating impaired brain redox status. These results indicate that the EPR imaging method developed in this study is useful for early noninvasive detection of altered brain redox status due to oxidative disease.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Enfermedades Neurodegenerativas
/
Enfermedad de Alzheimer
Tipo de estudio:
Diagnostic_studies
/
Screening_studies
Límite:
Animals
Idioma:
En
Revista:
Free Radic Biol Med
Asunto de la revista:
BIOQUIMICA
/
MEDICINA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Japón