Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes.
J Am Chem Soc
; 143(33): 12913-12918, 2021 08 25.
Article
en En
| MEDLINE
| ID: mdl-34388341
Allenes are versatile synthons in organic synthesis and medicinal chemistry because of their diverse reactivities. Catalytic 1,4-hydrosilylation of 1,3-enynes may present the straightforward strategy for synthesis of silylallenes. However, the transition-metal-catalyzed reaction has not been successful due to poor selectivity and very limited substrate scopes. We report here the efficient and selective 1,4-hydrosilylation of branched 1,3-enynes enabled by the ene-diamido rare-earth ate catalysts using both alkyl and aryl hydrosilanes, leading to the exclusive formation of tetrasubstituted silylallenes. Deuteration reaction, kinetic study, and DFT calculations were conducted to investigate the possible mechanism, revealing crucial roles of high Lewis acidity, large ionic radius, and ate structure of the rare-earth catalysts.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Am Chem Soc
Año:
2021
Tipo del documento:
Article