Your browser doesn't support javascript.
loading
Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells.
Cuevas-Velazquez, Cesar L; Vellosillo, Tamara; Guadalupe, Karina; Schmidt, Hermann Broder; Yu, Feng; Moses, David; Brophy, Jennifer A N; Cosio-Acosta, Dante; Das, Alakananda; Wang, Lingxin; Jones, Alexander M; Covarrubias, Alejandra A; Sukenik, Shahar; Dinneny, José R.
Afiliación
  • Cuevas-Velazquez CL; Department of Biology, Stanford University, Stanford, CA, 94305, USA. cuevas@quimica.unam.mx.
  • Vellosillo T; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA. cuevas@quimica.unam.mx.
  • Guadalupe K; Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico. cuevas@quimica.unam.mx.
  • Schmidt HB; Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico. cuevas@quimica.unam.mx.
  • Yu F; Department of Biology, Stanford University, Stanford, CA, 94305, USA.
  • Moses D; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
  • Brophy JAN; Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA.
  • Cosio-Acosta D; Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA.
  • Das A; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
  • Wang L; Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA.
  • Jones AM; Quantitative Systems Biology Program, University of California, Merced, CA, 95343, USA.
  • Covarrubias AA; Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA, 95343, USA.
  • Sukenik S; Chemistry and Chemical Biology Program, University of California, Merced, CA, 95343, USA.
  • Dinneny JR; Department of Biology, Stanford University, Stanford, CA, 94305, USA.
Nat Commun ; 12(1): 5438, 2021 09 14.
Article en En | MEDLINE | ID: mdl-34521831
ABSTRACT
Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Presión Osmótica / Agua / Técnicas Biosensibles / Chaperonas Moleculares / Proteínas de Arabidopsis / Proteínas Intrínsecamente Desordenadas Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Presión Osmótica / Agua / Técnicas Biosensibles / Chaperonas Moleculares / Proteínas de Arabidopsis / Proteínas Intrínsecamente Desordenadas Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos