Your browser doesn't support javascript.
loading
3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size.
Park, Jeong Hun; Ahn, Minjun; Park, Sun Hwa; Kim, Hyeonji; Bae, Mihyeon; Park, Wonbin; Hollister, Scott J; Kim, Sung Won; Cho, Dong-Woo.
Afiliación
  • Park JH; Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
  • Ahn M; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.
  • Park SH; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 137-710, Republic of Korea.
  • Kim H; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.
  • Bae M; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.
  • Park W; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea.
  • Hollister SJ; Wallace H. Coulter Department of Biomedical Engineering and Center for 3D Medical Fabrication, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA. Electronic address: scott.hollister@bme.gatech.edu.
  • Kim SW; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 137-710, Republic of Korea. Electronic address: kswent@catholic.ac.kr.
  • Cho DW; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea. Electronic address: dwcho@postech.ac.kr.
Biomaterials ; 279: 121246, 2021 12.
Article en En | MEDLINE | ID: mdl-34775331
ABSTRACT
Despite notable advances in extrusion-based 3D bioprinting, it remains a challenge to create a clinically-sized cellular construct using extrusion-based 3D printing due to long printing times adversely affecting cell viability and functionality. Here, we present an advanced extrusion-based 3D bioprinting strategy composed of a two-step printing process to facilitate creation of a trachea-mimetic cellular construct of clinically relevant size. A porous bellows framework is first printed using typical extrusion-based 3D printing. Selective printing of cellular components, such as cartilage rings and epithelium lining, is then performed on the outer grooves and inner surface of the bellows framework by a rotational printing process. With this strategy, 3D bioprinting of a trachea-mimetic cellular construct of clinically relevant size is achieved in significantly less total printing time compared to a typical extrusion-based 3D bioprinting strategy which requires printing of an additional sacrificial material. Tracheal cartilage formation was successfully demonstrated in a nude mouse model through a subcutaneous implantation study of trachea-mimetic cellular constructs wrapped with a sinusoidal-patterned tubular mesh preventing rapid resorption of cartilage rings in vivo. This two-step 3D bioprinting for a trachea-mimetic cellular construct of clinically relevant size can provide a fundamental step towards clinical translation of 3D bioprinting based tracheal reconstruction.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bioimpresión Límite: Animals Idioma: En Revista: Biomaterials Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Bioimpresión Límite: Animals Idioma: En Revista: Biomaterials Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos