Your browser doesn't support javascript.
loading
Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires.
Calavalle, Francesco; Suárez-Rodríguez, Manuel; Martín-García, Beatriz; Johansson, Annika; Vaz, Diogo C; Yang, Haozhe; Maznichenko, Igor V; Ostanin, Sergey; Mateo-Alonso, Aurelio; Chuvilin, Andrey; Mertig, Ingrid; Gobbi, Marco; Casanova, Fèlix; Hueso, Luis E.
Afiliación
  • Calavalle F; CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
  • Suárez-Rodríguez M; CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
  • Martín-García B; CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
  • Johansson A; Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Vaz DC; Max Planck Institute of Microstructure Physics, Halle, Germany.
  • Yang H; CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
  • Maznichenko IV; CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
  • Ostanin S; Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Mateo-Alonso A; Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Chuvilin A; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
  • Mertig I; POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.
  • Gobbi M; CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain.
  • Casanova F; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
  • Hueso LE; Institute of Physics, Martin Luther University Halle-Wittenberg, Halle, Germany.
Nat Mater ; 21(5): 526-532, 2022 05.
Article en En | MEDLINE | ID: mdl-35256792
ABSTRACT
Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanocables Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanocables Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: España