Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells.
Biosens Bioelectron
; 213: 114425, 2022 Oct 01.
Article
en En
| MEDLINE
| ID: mdl-35688024
The isolation and analysis of scarce circulating tumor cells (CTCs) with immunomagnetic nanoparticles (IMNs) have shown promising outcomes in noninvasive cancer diagnosis. However, the IMNs adsorb nonspecific proteins after entering into biofluids and the formed protein coronas cover surface targeting ligands, limiting the detection efficiency of IMNs. In addition, the interaction between surface targeting ligands and white blood cells (WBCs) significantly limits the purity of CTCs isolated by IMNs. Furthermore, the interfacial collision of nanoparticles and cells has negative effects on the viability of isolated CTCs. All of these limitations synthetically restrict the isolation and analysis of rare CTCs for early diagnosis and precision medicine. Here, we proposed that surface functionalization of IMNs with neutrophil membranes can simultaneously reduce nonspecific protein adsorption, enhance the interaction with CTCs, reduce the distraction from WBCs, and improve the viability of isolated CTCs. In spiked blood samples, our neutrophil membrane-coated IMNs (Neu-IMNs) exhibited a superior separation efficiency from 41.36% to 96.82% and an improved purity from 40.25% to 90.68% when compared to bare IMNs. Additionally, we successfully isolated CTCs in 19 out of total 20 blood samples from breast cancer patients using Neu-IMNs and further confirmed the feasibility of the isolated CTCs for downstream cell sequencing. Our work provides a new perspective on engineered IMNs for efficient isolation and analysis of CTCs, paving the way for early noninvasive diagnosis of cancer.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Técnicas Biosensibles
/
Nanopartículas
/
Células Neoplásicas Circulantes
Tipo de estudio:
Screening_studies
Límite:
Humans
Idioma:
En
Revista:
Biosens Bioelectron
Asunto de la revista:
BIOTECNOLOGIA
Año:
2022
Tipo del documento:
Article
País de afiliación:
China