Application and uncertainty of a geochemical speciation model for predicting oxyanion leaching from coal fly ash under different controlling mechanisms.
J Hazard Mater
; 438: 129518, 2022 Sep 15.
Article
en En
| MEDLINE
| ID: mdl-35999720
Three primary mechanisms (adsorption to iron oxides or analogous surfaces, co-precipitation with Ca, and substitution in ettringite) controlling oxyanion retention in coal fly ashes (CFAs) were identified by differentiating the leaching behavior of As, B, Cr, Mo, Se, and V from 30 CFAs. Fidelity evaluation of geochemical speciation modeling focused on six reference CFAs representing a range of CFA compositions, whereby different leaching-controlling mechanisms of oxyanions were systematically considered. For three reference CFAs with low Ca and S content, calibration of adsorption reactions for the diffuse double-layer model for hydrous ferric oxides improved the simultaneous prediction of oxyanion leaching, which reduced uncertainties in Se and V predictions caused by nonideal adsorption surfaces and competitive adsorption effects. For two reference CFAs with intermediate Ca content, the solubility constants for Ca-arsenates from literature and postulated phases of B, Cr, Se, and V were used to describe co-precipitation of oxyanions with Ca-bearing minerals under alkaline conditions. For the reference CFA with high Ca and S content, an ettringite solid solution was used to capture the simultaneous retention of all oxyanions at pH> 9.5. Overall, the simultaneous leaching predictions of oxyanions from a wide range of CFAs were improved by calibration of adsorption reactions and controlling solid phases.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
J Hazard Mater
Asunto de la revista:
SAUDE AMBIENTAL
Año:
2022
Tipo del documento:
Article
País de afiliación:
Estados Unidos