Your browser doesn't support javascript.
loading
Deep Learning on Chromatin Accessibility.
Kim, Daniel S.
Afiliación
  • Kim DS; Biomedical Informatics Program, Stanford University School of Medicine, Stanford, CA, USA. dskim89@stanford.edu.
Methods Mol Biol ; 2611: 325-333, 2023.
Article en En | MEDLINE | ID: mdl-36807077
DNA accessibility has been a powerful tool in locating active regulatory elements in a cell type, but dissecting the combinatorial logic within these regulatory elements has been a continued challenge in the field. Deep learning models have been shown to be highly predictive models of regulatory DNA and have led to new biological insights on regulatory syntax and logic. Here, we provide a framework for deep learning in genomics that implements best practices and focuses on ease of use, versatility, and compatibility with existing tools for inference on DNA sequence.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cromatina / Aprendizaje Profundo Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Cromatina / Aprendizaje Profundo Tipo de estudio: Guideline / Prognostic_studies Idioma: En Revista: Methods Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos