Your browser doesn't support javascript.
loading
Fabrication of Aluminum Oxide Thin-Film Devices Based on Atomic Layer Deposition and Pulsed Discrete Feed Method.
Lin, Shih-Chin; Wang, Ching-Chiun; Tien, Chuen-Lin; Tung, Fu-Ching; Wang, Hsuan-Fu; Lai, Shih-Hsiang.
Afiliación
  • Lin SC; Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
  • Wang CC; Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
  • Tien CL; Department of Electrical Engineering, Feng Chia University, Taichung 40724, Taiwan.
  • Tung FC; Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
  • Wang HF; Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
  • Lai SH; Mechanical and Systems Research Lab, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
Micromachines (Basel) ; 14(2)2023 Jan 21.
Article en En | MEDLINE | ID: mdl-36837979
ABSTRACT
This study demonstrates the low-temperature (<100 °C) process for growing a thin silica buffer layer and aluminum oxide by atomic layer deposition (ALD) in the same reaction chamber. Heterogeneous multilayer thin films are prepared by a dual-mode equipment based on atomic layer deposition and plasma-enhanced chemical vapor deposition (PECVD) techniques. The pulse discrete feeding method (DFM) was used to divide the precursor purging steps into smaller intervals and generate discrete feeds, which improved the saturated distribution of gas precursors, film density and deposition selectivity. The experimental results show that the process method produces a uniform microstructure and that the best film uniformity is ±2.3% and growth rate is 0.69 Å/cycle. The thickness of aluminum oxide film has a linear relationship with the cyclic growth number from 360 to 1800 cycles. Meanwhile, the structural and mechanical stress properties of aluminum oxide thin films were also verified to meet the requirements of advanced thin-film devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Taiwán