Your browser doesn't support javascript.
loading
Remote-Triggered Domino-like Cyclodehydrogenation in Second-Layer Topological Graphene Nanoribbons.
Ma, Chuanxu; Wang, Jufeng; Ma, Huanhuan; Yin, Ruoting; Zhao, Xin-Jing; Du, Hongjian; Meng, Xinyong; Ke, Yifan; Hu, Wei; Li, Bin; Tan, Shijing; Tan, Yuan-Zhi; Yang, Jinlong; Wang, Bing.
Afiliación
  • Ma C; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wang J; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
  • Ma H; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Yin R; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zhao XJ; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Du H; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
  • Meng X; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Ke Y; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
  • Hu W; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Li B; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Tan S; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Tan YZ; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
  • Yang J; Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Wang B; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China.
J Am Chem Soc ; 145(18): 10126-10135, 2023 May 10.
Article en En | MEDLINE | ID: mdl-37097709
ABSTRACT
Cyclodehydrogenation reactions in the on-surface synthesis of graphene nanoribbons (GNRs) usually involve a series of Csp2-Csp2 and/or Csp2-Csp3 couplings and just happen on uncovered metal or metal oxide surfaces. It is still a big challenge to extend the growth of second-layer GNRs in the absence of necessary catalytic sites. Here, we demonstrate the direct growth of topologically nontrivial GNRs via multistep Csp2-Csp2 and Csp2-Csp3 couplings in the second layer by annealing designed bowtie-shaped precursor molecules over one monolayer on the Au(111) surface. After annealing at 700 K, most of the polymerized chains that appear in the second layer covalently link to the first-layer GNRs that have partially undergone graphitization. Following annealing at 780 K, the second-layer GNRs are formed and linked to the first-layer GNRs. Benefiting from the minimized local steric hindrance of the precursors, we suggest that the second-layer GNRs undergo domino-like cyclodehydrogenation reactions that are remotely triggered at the link. We confirm the quasi-freestanding behaviors in the second-layer GNRs by measuring the quasiparticle energy gap of topological bands and the tunable Kondo resonance from topological end spins using scanning tunneling microscopy/spectroscopy combined with first-principles calculations. Our findings pave the avenue to diverse multilayer graphene nanostructures with designer quantum spins and topological states for quantum information science.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2023 Tipo del documento: Article País de afiliación: China