Your browser doesn't support javascript.
loading
Tetrasubstituted Pyrrole Derivative Mimetics of Protein-Protein Interaction Hot-Spot Residues: A Promising Class of Anticancer Agents Targeting Melanoma Cells.
Persico, Marco; Galatello, Paola; Ferraro, Maria Grazia; Irace, Carlo; Piccolo, Marialuisa; Abduvakhidov, Avazbek; Tkachuk, Oleh; d'Aulisio Garigliota, Maria Luisa; Campiglia, Pietro; Iannece, Patrizia; Varra, Michela; Ramunno, Anna; Fattorusso, Caterina.
Afiliación
  • Persico M; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
  • Galatello P; Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84100 Fisciano, SA, Italy.
  • Ferraro MG; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
  • Irace C; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
  • Piccolo M; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
  • Abduvakhidov A; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
  • Tkachuk O; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
  • d'Aulisio Garigliota ML; Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84100 Fisciano, SA, Italy.
  • Campiglia P; Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84100 Fisciano, SA, Italy.
  • Iannece P; Department of Chemistry and Biology, University of Salerno, Via G. Paolo II 132, 84100 Fisciano, SA, Italy.
  • Varra M; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
  • Ramunno A; Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84100 Fisciano, SA, Italy.
  • Fattorusso C; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, NA, Italy.
Molecules ; 28(10)2023 May 18.
Article en En | MEDLINE | ID: mdl-37241902
ABSTRACT
A new series of tetrasubstituted pyrrole derivatives (TSPs) was synthesized based on a previously developed hypothesis on their ability to mimic hydrophobic protein motifs. The resulting new TSPs were endowed with a significant toxicity against human epithelial melanoma A375 cells, showing IC50 values ranging from 10 to 27 µM, consistent with the IC50 value of the reference compound nutlin-3a (IC50 = 15 µM). In particular, compound 10a (IC50 = 10 µM) resulted as both the most soluble and active among the previous and present TSPs. The biological investigation evidenced that the anticancer activity is related to the activation of apoptotic cell-death pathways, supporting our rational design based on the ability of TSPs to interfere with PPI involved in the cell cycle regulation of cancer cells and, in particular, the p53 pathway. A reinvestigation of the TSP pharmacophore by using DFT calculations showed that the three aromatic substituents on the pyrrole core are able to mimic the hydrophobic side chains of the hot-spot residues of parallel and antiparallel coiled coil structures suggesting a possible molecular mechanism of action. A structure-activity relationship (SAR) analysis which includes solubility studies allows us to rationalize the role of the different substituents on the pyrrole core.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Melanoma / Antineoplásicos Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Melanoma / Antineoplásicos Límite: Humans Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Italia