Capillary-Scale Hydrogel Microchannel Networks by Wire Templating.
Small
; 19(42): e2301163, 2023 10.
Article
en En
| MEDLINE
| ID: mdl-37267935
Microvascular networks are essential for the efficient transport of nutrients, waste products, and drugs throughout the body. Wire-templating is an accessible method for generating laboratory models of these blood vessel networks, but it has difficulty fabricating microchannels with diameters of ten microns and narrower, a requirement for modeling human capillaries. This study describes a suite of surface modification techniques to selectively control the interactions amongst wires, hydrogels, and world-to-chip interfaces. This wire templating method enables the fabrication of perfusable hydrogel-based rounded cross-section capillary-scale networks whose diameters controllably narrow at bifurcations down to 6.1 ± 0.3 microns in diameter. Due to its low cost, accessibility, and compatibility with a wide range of common hydrogels of tunable stiffnesses such as collagen, this technique may increase the fidelity of experimental models of capillary networks for the study of human health and disease.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Capilares
/
Hidrogeles
Límite:
Humans
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article