Your browser doesn't support javascript.
loading
Comparison of the seasonal and successional variation of asymbiotic and symbiotic nitrogen fixation along a glacial retreat chronosequence.
Zhang, Jun; DeLuca, Thomas H; Chenpeng, Zhenni; Li, Andi; Wang, Genxu; Sun, Shouqin.
Afiliación
  • Zhang J; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, Chin
  • DeLuca TH; College of Forestry, Oregon State University, Corvallis, OR 97331-5704, USA.
  • Chenpeng Z; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China.
  • Li A; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
  • Wang G; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China.
  • Sun S; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, No.24 South Section 1, Yihuan Rd, Chengdu 610065, China. Electronic address: shouqinsun@scu.edu.cn.
Sci Total Environ ; 896: 165163, 2023 Oct 20.
Article en En | MEDLINE | ID: mdl-37391152
ABSTRACT
Climate change is resulting in accelerated retreat of glaciers worldwide and much nitrogen-poor debris is left after glacier retreats. Asymbiotic dinitrogen (N2) fixation (ANF) can be considered a 'hidden' source of nitrogen (N) for non-nodulating plants in N limited environments; however, seasonal variation and its relative importance in ecosystem N budgets, especially when compared with nodulating symbiotic N2-fixation (SNF), is not well-understood. In this study, seasonal and successional variations in nodulating SNF and non-nodulating ANF rates (nitrogenase activity) were compared along a glacial retreat chronosequence on the eastern edge of the Tibetan Plateau. Key factors regulating the N2-fixation rates as well as the contribution of ANF and SNF to ecosystem N budget were also examined. Significantly greater nitrogenase activity was observed in nodulating species (0.4-17,820.8 nmol C2H4 g-1 d-1) compared to non-nodulating species (0.0-9.9 nmol C2H4 g-1 d-1) and both peaked in June or July. Seasonal variation in acetylene reduction activity (ARA) rate in plant nodules (nodulating species) and roots (non-nodulating species) was correlated with soil temperature and moisture while ARA in non-nodulating leaves and twigs was correlated with air temperature and humidity. Stand age was not found to be a significant determinant of ARA rates in nodulating or non-nodulating plants. ANF and SNF contributed 0.3-51.5 % and 10.1-77.8 %, respectively, of total ecosystem N input in the successional chronosequence. In this instance, ANF exhibited an increasing trend with successional age while SNF increased only at stages younger than 29 yr and then decreased as succession proceeded. These findings help improve our understanding of ANF activity in non-nodulating plants and N budgets in post glacial primary succession.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Fijación del Nitrógeno Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Fijación del Nitrógeno Idioma: En Revista: Sci Total Environ Año: 2023 Tipo del documento: Article