Your browser doesn't support javascript.
loading
Macroscopic photonic single crystals via seeded growth of DNA-coated colloids.
Hensley, Alexander; Videbæk, Thomas E; Seyforth, Hunter; Jacobs, William M; Rogers, W Benjamin.
Afiliación
  • Hensley A; Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA.
  • Videbæk TE; Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA.
  • Seyforth H; Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA.
  • Jacobs WM; Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA. wjacobs@princeton.edu.
  • Rogers WB; Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, USA. wrogers@brandeis.edu.
Nat Commun ; 14(1): 4237, 2023 07 15.
Article en En | MEDLINE | ID: mdl-37454159
ABSTRACT
Photonic crystals-a class of materials whose optical properties derive from their structure in addition to their composition-can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotones / Óptica y Fotónica Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Fotones / Óptica y Fotónica Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos